
Dataflow Testing

Chapter 9!

DFT–2

Dataflow Testing

n  Testing All-Nodes and All-Edges in a control flow graph
may miss significant test cases 
!

n  Testing All-Paths in a control flow graph is often too time-
consuming  
!

n  Can we select a subset of these paths that will reveal the
most faults?  
!

n  Dataflow Testing focuses on the points at which variables
receive values and the points at which these values are
used!

DFT–3

Dataflow Analysis

n  Can reveal interesting bugs!

n  A variable that is defined but never used!

n  A variable that is used but never defined!

n  A variable that is defined twice before it is used!

n  Sending a modifier message to an object more than
once between accesses!

n  Deallocating a variable before it is used!
n  Container problem!

n  Deallocating container loses references to items in
the container, memory leak!

DFT–4

Definitions

n  A node n in the program graph is a defining node for
variable v – DEF(v, n) – if the value of v is defined at the
statement fragment in that node!

n  Input, assignment, procedure calls  
!

n  A node in the program graph is a usage node for variable
v – USE(v, n) – if the value of v is used at the statement
fragment in that node!

n  Output, assignment, conditionals!

DFT–5

Definitions – 2

n  A usage node is a predicate use, P-use, if variable v
appears in a predicate expression!

n  Always in nodes with outdegree ≥ 2!

n  A usage node is a computation use, C-use, if variable v
appears in a computation!

n  Always in nodes with outdegree ≤ 1!

DFT–6

Definitions – 3

n  A node in the program is a kill node for a variable v –
KILL(v, n) – if the variable is deallocated at the statement
fragment in that node  
!

DFT–7

Example 2 – Billing program

calculateBill (usage : INTEGER) : INTEGER
double bill = 0;

if usage > 0 then bill = 40 fi

if usage > 100
then if usage ≤ 200

 then bill = bill + (usage – 100) *0.5
 else bill = bill + 50 + (usage – 200) * 0.1

 if bill ≥ 100 then bill = bill * 0.9 fi

 fi
fi
return bill
end Kill node for bill

DFT–8

Definition-Use path

n  What is a du-path?!

DFT–9

Definition-Use path – 2

n  What is a du-path?!

n  A definition-use path, du-path, with respect to a variable
v is a path whose first node is a defining node for v, and
its last node is a usage node for v  
!

DFT–10

Definition clear path

n  What is a dc-path?!

DFT–11

Definition clear path – 2

n  What is a dc-path?!

n  A du-path with no other defining node for v is a
definition-clear path!

DFT–12

1 int max = 0;!
2 int j = s.nextInt();!
3 while (j > 0)!
4 if (j > max) {!
5 max = j;!
6 }!
7 j = s.nextInt();!
8 }!
9 System.out.println(max);!

Example 1 – Max program

A definition of j

A C-use of j

P-uses of j & max

A definition of j

Definitions
of max

A C-use of max

DFT–13

Max program – analysis

Legend!
A..F Segment name!
d defining node for j!
u use node for j!

int max = 0;!
int j = s.nextInt();

while (j > 0)!

System.out.println(max);!

max = j;!

if (j > max)!

j = s.nextInt();!

A

B

C

D

E

F

d

d

u

u

u

dc-paths j!
A B!
A B C!
A B C D!
E B!
E B C!
E B C D!
!
dc-paths max!
A B F!
A B C!
D E B C!
D E B F!

DFT–14

Dataflow Coverage Metrics

n  Based on these definitions we can define a set of
coverage metrics for a set of test cases!

n  We have already seen!

n  All-Nodes!

n  All-Edges!

n  All-Paths!

n  Data flow has additional test metrics for a set T of paths in
a program graph!

n  All assume that all paths in T are feasible!

DFT–15

All-Defs Criterion

n  The set T satisfies the All-Def criterion!
n  For every variable v, T contains a dc-path from

every defining node for v to at least one usage
node for v  
!

n  Not all use nodes need to be reached!

€

∀v ∈V (P),nd∈ prog_ graph(P) |DEF(v,nd)
•∃nu∈ prog_ graph(P) |USE(v,nu)
•dc _ path(nd,nu)∈T

DFT–16

All-Uses Criterion

n  The set T satisfies the All-Uses criterion iff !

n  For every variable v, T contains dc-paths that start at
every defining node for v, and terminate at every usage
node for v!

n  Not DEF(v, n) × USE(v, n) – not possible to have a dc-
path from every defining node to every usage node!

€

(∀v ∈V (P),nu∈ prog_ graph(P) |USE(v,nu)
•∃nd∈ prog_ graph(P) |DEF(v,nd) • dc _ path(nd,nu)∈T)
∧

all_ defs_criterion

DFT–17

All-P-uses / Some-C-uses

n  The set T satisfies the All-P-uses/Some-C-uses criterion iff!

n  For every variable v in the program P, T contains a dc-
path from every defining node of v to every P-use node
for v!

n  If a definition of v has no P-uses, a dc-path leads to
at least one C-use node for v!

€

(∀v ∈V (P),nu∈ prog_ graph(P) |P _ use(v,nu)
•∃nd∈ prog_ graph(P) |DEF(v,nd) • dc _ path(nd,nu)∈T)
∧

all_ defs_criterion

DFT–18

All-C-uses / Some-P-uses

n  The test set T satisfies the All-C-uses/Some-P-uses
criterion iff!

n  For every variable v in the program P, T contains a dc-
path from every defining node of v to every C-use of v!

n  If a definition of v has no C-uses, a dc-path leads to
at least one P-use!

€

(∀v ∈V (P),nu∈ prog_ graph(P) |C _ use(v,nu)
•∃nd∈ prog_ graph(P) |DEF(v,nd) • dc _ path(nd,nu)∈T)
∧

all_ defs_criterion

DFT–19

Miles-per-gallon Program

miles_per_gallon (miles, gallons, price : INTEGER)

if gallons = 0 then

 // Watch for division by zero!!

 Print(“You have “ + gallons + “gallons of gas”)

else if miles/gallons > 25

 then print(“Excellent car. Your mpg is “
 + miles/gallon)

 else print(“You must be going broke. Your mpg is “
 + miles/gallon + “ cost “ + gallons * price)

fi
end

DFT–20

Miles-per-gallon Program – 2

n  We want du- and dc-paths!

n  What do you do next?!

DFT–21

Mile-per-gallon Program – Segmented

gasguzzler (miles, gallons, price : INTEGER) A

if gallons = 0 then B

 // Watch for division by zero!! C

 Print(“You have “ + gallons + “gallons of gas”)

else if miles/gallons > 25 D

 then print(“Excellent car. Your mpg is “ E
 + miles/gallon)

 else print(“You must be going broke. Your mpg is “ F
 + miles/gallon + “ cost “ + gallons * price)

fi G
end

DFT–22

Miles-per-gallon Program – 3

n  We want du- and dc-paths!

n  What do you do next?!

DFT–23

MPG program graph

What do you do now?

DFT–24

MPG program graph

Def miles,
gallons

P-use
gallons

P-use
 miles,
gallons

C-use gallons

C-use miles, gallons, price

C-use miles, gallons

Possible
C-use miles, gallons
But not common
practice

DFT–25

Miles-per-gallon Program – 4

n  We want du- and dc-paths!

n  What do you do next?!

DFT–26

Example du-paths

n  For each variable in the miles_per_gallon program create
the test paths for the following dataflow path sets!

n  All-Defs (AD)!

n  All-C-uses (ACU)!

n  All-P-uses (APU)!

n  All-C-uses/Some-P-uses (ACU+P)!

n  All-P-uses/Some-C-uses (APU+C)!

n  All-uses!

DFT–27

MPG – DU-Paths for Miles

n  All-Defs!

n  Each definition of each variable for at least one use of
the definition!

n  A B D!

n  All-C-uses!

n  At least one path of each variable to each c-use of the
definition!

n  A B D E !A B D F !A B D!

DFT–28

MPG – DU-Paths for Miles – 2

n  All-P-uses!

n  At last one path of each variable to each p-use of the
definition!

n  A B D!

n  All-C-uses/Some-P-uses!

n  At least one path of each variable definition to each c-
use of the variable. If any variable definitions are not
covered use p-use!

n  A B D E !A B D F !A B D!

DFT–29

MPG – DU-Paths for Miles – 3

n  All-P-uses/Some-C-uses!
n  At least one path of each variable definition to each p-

use of the variable. If any variable definitions are not
covered by p-use, then use c-use!

n  A B D!

n  All-uses!

n  At least one path of each variable definition to each p-
use and each c-use of the definition!

n  A B D !A B D E !A B D F!

DFT–30

MPG – DU-Paths for Gallons

n  All-Defs!

n  Each definition of each variable for at least one use of the
definition!

n  A B!

n  All-C-uses!

n  At least one path of each variable to each c-use of the
definition!

n  A B C A B D E A B D F A B D!

DFT–31

MPG – DU-Paths for Gallons – 2

n  All-P-uses!

n  At least one path of each variable definition to each p-
use of the definition!

n  A B ! !A B D!

n  All-C-uses/Some-P-uses!
n  At least one path of each variable definition to each c-

use of the variable. If any variable definitions are not
covered by c-use, then use p-use!

n  A B C A B D E A B D F A B D!

DFT–32

MPG – DU-Paths for Gallons – 3

n  All-P-uses/Some-C-uses!
n  At least one path of each variable definition to each p-

use of the variable. If any variable definitions are not
covered use c-use!

n  A B ! !A B D!

n  All-uses!

n  At least one path of each variable definition to each p-
use and each c-use of the definition!

n  A B A B C A B D A B D E A B D F!

DFT–33

MPG – DU-Paths for Price

n  All-Defs!

n  Each definition of each variable for at least one use of
the definition!

n  A B D F!

n  All-C-uses!

n  At least one path of each variable to each c-use of the
definition!

n  A B D F!

DFT–34

MPG – DU-Paths for Price – 2

n  All-P-uses!
n  At least one path of each variable definition to each p-

use of the definition!
n  None!

n  All-C-uses/Some-P-uses!

n  At least one path of each variable definition to each c-
use of the variable. If any variable definitions are not
covered use p-use!

n  A B D F!

DFT–35

MPG – DU-Paths for Price – 2

n  All-P-uses/Some-C-uses!
n  At least one path of each variable definition to each p-

use of the variable. If any variable definitions are not
covered use c-use!

n  A B D F!

n  All-uses!

n  At least one path of each variable definition to each p-
use and each c-use of the definition!

n  A B D F!

DFT–36

Rapps-Weyuker data flow hierarchy

All-Paths

All-DU-Paths!

All-Uses!

All-C-uses!
Some-P-uses!

All-Defs! All-P-uses!

All-Edges!

All-Nodes!

All-P-uses!
Some-C-uses!

DFT–37

Potential Anomalies – static analysis

Anomalies! Explanation!
~ d! first define! ???!
du! define-use! ???!
dk! define-kill! ???!
~ u! first use! ???!
ud! use-define! ???!
uk! use-kill! ???!
~ k! first kill! ???!
ku! kill-use! ???!

Data flow node combinations for a variable
Allowed? – Potential Bug? – Serious defect?

DFT–38

Potential Anomalies – static analysis – 2

Data flow node combinations for a variable
Allowed? – Potential Bug? – Serious defect?

Anomalies! Explanation!
kd! kill-define! ???!
dd! define-define! ???!
uu! use-use! ???!
kk! kill-kill! ???!
d ~! define last! ???!
u ~! use last! ???!
k ~! kill last! ???!

DFT–39

Potential Anomalies – static analysis – 3

Anomalies! Explanation!
~ d! first define! Allowed – normal case!
du! define-use! Allowed – normal case!
dk! define-kill! Potential bug!
~ u! first use! Potential bug!
ud! use-define! Allowed – redefine!
uk! use-kill! Allowed – normal case!
~ k! first kill! Serious defect!
ku! kill-use! Serious defect!

DFT–40

Potential Anomalies – static analysis – 4

Anomalies! Explanation!
kd! kill-define! Allowed - redefined!
dd! define-define! Potential bug!
uu! use-use! Allowed - normal case!
kk! kill-kill! Serious defect!
d ~! define last! Potential bug!
u ~! use last! Allowed- normal case!
k ~! kill last! Allowed - normal case!

DFT–41

Data flow guidelines

n  When is dataflow analysis good to use?!

DFT–42

Data flow guidelines – 2

n  When is dataflow analysis good to use? 
!

n  Data flow testing is good for computationally/control
intensive programs!

n  If P-use of variables are computed, then P-use data
flow testing is good 
!

n  Define/use testing provides a rigorous, systematic way
to examine points at which faults may occur.!

DFT–43

Data flow guidelines – 3

n  Aliasing of variables causes serious problems! 
!

n  Working things out by hand for anything but small
methods is hopeless 
!

n  Compiler-based tools help in determining coverage values!

