
1

Slicing

Chapter 9!

SL–2

Program slice

n  What is a program slice?!

SL–3

Program slice – Informally

n  What is a program slice?!
n  A program slice is a set of program statements that

contributes to or affects the value of a variable at some
point in a program!

SL–4

Program slice – Formally

n  What is a program slice?!

n  Given a program P and a set of variables V in P and a
statement or statement fragment n!
n  A slice S(V, n) is!

n  A set of node numbers in a program graph !
n  The set of all statements and statement fragments in

P prior to the node n that contribute to the values of
variables in V at node n.!

n  Prior to is a dynamic execution time notion!

SL–5

Program slice – Point of

n  Analyze a program by focusing on parts of interest,
disregarding uninteresting parts!
n  The point of slices is to separate a program into

components that have a useful functional meaning!
n  Ignore those parts that do not contribute to the

functional meaning of interest!
n  Cannot do this with du-paths, as slices are not simply

sequences of statements or statement fragments!

SL–6

Program slice – meaning of "contributes to"

n  Refine the meaning of usage and defining nodes!
n  P-use !– used in a decision predicate!
n  C-use !– used in a computation!
n  O-use !– used for output!
n  L-use !– used for location (pointers, subscripts)!
n  I-use !– used for iteration (loop counters, loop

indices)!
n  I-def !– defined by input!
n  A-def !– defined by assignment!

n  Textbook excludes all non-executable statements
such as variable declarations!

2

SL–7

Program slide – meaning of "contributes to" – 2

n  What to include in S(V,n)?!
n  Consider a single variable v!

n  Include all I-def, A-def!
n  Include any C-use, P-use of v, if excluding it would

change the value of v!
n  Include any P-use or C-use of another variable, if

excluding it would change the value of v!

SL–8

Program slide – meaning of "contributes to" – 3

n  What to include in S(V,n)?!
n  Consider a single variable v!

n  L-use and I-use!
n  Inclusion is a judgment call, as such use does cause

problems !

n  Exclude all non-executable nodes such as variable
declarations!

n  If a slice is not to be compilable!

n  Exclude O-use, as does not change the value of v!

SL–9

1 int i;!
2 int sum = 0;!
3 int product = 1;!
4 for(i = 0; i < N; ++i) {!
5 sum = sum + i;!
6 product = product * i;!
7 }!
8 write(sum);!
9 write(product);!

Example 1 – What is S(sum,8)?

SL–10

Example 1 – S(sum,8)

1 int i;!
2 int sum = 0;!
4 for(i = 0; i < N; ++i) {!
5  sum = sum + i;!
7 }!
8 write(sum);!

Class Exercise

SL–11

1 program Example()
2 var staffDiscount, totalPrice, finalPrice, discount, price
3 staffDiscount = 0.1
4 totalPrice = 0
5 input(price)
6 while(price != -1) do
7 totalPrice = totalPrice + price
8 input(price)
9 od
10 print("Total price: " + totalPrice)
11 if(totalPrice > 15.00) then
12 discount = (staffDiscount * totalPrice) + 0.50
13 else
14 discount = staffDiscount * totalPrice
15 fi
16 print("Discount: " + discount)
17 finalPrice = totalPrice - discount
18 print("Final price: " + finalPrice)
19 endprogram! SL–12

Slice style & technique

n  Make slices on one variable!
n  Slices with more variables are super sets of a one

variable case!
n  Do not make a slice S(V, n) where the variables of

interest are not in node n!

3

SL–13

Slice style & technique – 2

n  Make slices for all A-def nodes!

n  Make slices for all P-use nodes!
n  Very useful in decision intensive programs!

n  Try to make slices compilable!
n  Means including declarations and compiler directives!
n  Such slices become executable and more easily tested!

SL–14

Slice style & technique – 3

n  Avoid slices on C-use!
n  They tend to be redundant!

n  Avoid slices on O-use!
n  They are the union of all the A-def and I-def slices!

n  Dramatically increases test effort!

SL–15

Slice style & technique – 4

n  Relative complement of slices can have diagnostic value!
n  If you have difficulty at a part, divide the program into

two parts!
n  If the error does not lie in one part, then it must be in the

relative complement!

SL–16

Slice style & technique – 5

n  Slices and DD-paths have a many-to-many relationship!
n  Nodes in one slice may be in many DD-paths, and nodes

in one DD-path may be in many slices!
n  Sometimes well-chosen relative complement slices can

be identical to DD-paths!

n  Developing a lattice of slices can improve insight in
potential trouble spots!

SL–17

Lattice

n  What is a lattice?!

SL–18

Lattice – 2

n  What is a lattice?!
n  A directed acyclic graph!
n  Shows "contained-in" relationships!

n  See Figures 9.9 & 9.10 and Class Exercise!

