
1

Automated GUI testing

How to test an interactive
application automatically?

2

Some GUI facts
n  Software testing accounts for 50-60%

of total software development costs
n  GUIs can constitute as much as 60% of

the code of an application
n  GUI development frameworks such as

Swing make GUI development easier
n  Unfortunately, they make GUI testing

much harder

3

Why is GUI testing difficult?
n  Event-driven architecture

n  User actions create events
n  An automatic test suite has to simulate these

events somehow

n  Large space of possibilities
n  The user may click on any pixel on the screen
n  Even the simplest components have a large

number of attributes and methods
n  JButton has more than 50 attributes and 200 methods

n  The state of the GUI is a combination of the states
of all of its components

4

Challenges of GUI testing
n  Test case generation: What combinations

of user actions to try?
n  Oracles: What is the expected GUI

behaviour?
n  Coverage: How much testing is enough?
n  Regression testing: Can test cases from an

earlier version be re-used?
n  Representation: How to represent the GUI

to handle all the above?

5

A GUI test case

1.  Select text “Some”
2.  Menu “Format”
3.  Option “Font”

6

A GUI Test Case

4. Combobox “Size”
5. Click on 26
6. Click OK

2

7

A GUI Test Case

7. Select “text”
8. Click U
9. Verify that the
 output looks
 like this

8

GUI vs. business model testing

n  GUI testing
n  The look of the text in the editor window

corresponds to the operations performed
n  The U button is selected
n  All appropriate actions are still enabled, i.e.

we can italicize the underlined text
n  Business model testing

n  Word’s internal model reflects the text
formatting we performed

9

Two approaches to GUI testing

1.  Black box
n  Launch application
n  Simulate mouse and keyboard events
n  Compare final look to an existing screen

dump
n  Very brittle test cases
n  Cannot test business model
n  Framework independent

10

Two approaches to GUI testing

2.  Glass box
n  Launch application in the testing code
n  Obtain references to the various

components and send events to them
n  Assert the state of components directly

n  Test cases harder to break
n  Business model can be tested
n  Framework dependent

11

A first approach

n  The Java API provides a class called
java.awt.Robot

n  It can be used to generate native
system input events
n  Different than creating Event objects and

adding them to the AWT event queue
n  These events will indeed move the mouse,

click, etc.

12

RobotDemo

3

13

Testing with Robot
n  User input can be simulated by the

robot
n  How to evaluate that the correct GUI

behaviour has taken place?
n  Robot includes method

public BufferedImage
createScreenCapture(Rectangle screenRe
ct)

n  Creates an image containing pixels read
from the screen

14

Problems with this approach

n  Low-level
n  Would rather say “Select "blue" from the

colour list” than
 Move to the colour list
 co-ordinates
 Click
 Press ↓ 5 times
 Click

n  Brittle test cases (regression impossible)

15

A better approach
n  Every GUI component should provide a

public API which can be invoked in the
same manner via a system user event
or programmatically

n  Component behaviour should be
separated from event handling code

n  For example, class JButton contains the
doClick() method

16

Unfortunately…

n  Most GUI development frameworks are
not designed in this fashion

n  In Swing, event handling is mixed with
complex component behaviour in the
Look and Feel code

n  Few components offer methods such as
doClick()

17

Abbot – A Better ’Bot
n  A GUI testing framework for Swing
n  Works seamlessly with Junit

n  Uses some Junit 3 features
n  Can be used to create

n  Unit tests for GUI components
n  Functional tests for existing GUI apps

n  Open source
n  http://abbot.sourceforge.net/

18

Goals of the Abbot framework

n  Reliable reproduction of user input
n  High-level semantic actions
n  Scripted control of actions
n  Loose component bindings

4

19

Abbot overview
n  A better Robot class is provided

n  abbot.tester.Robot includes events to click, drag,
type on any component

n  For each Swing widget a corresponding
Tester class is provided
n  E.g. JPopupMenuTester provides a method called

getMenuLabels()

n  Components can be retrieved from the
component hierarchy
n  No direct reference to any widget is necessary

20

A typical test case

JButton button = (JButton)getFinder().find(
 new Matcher() {
 public boolean matches(Component c) {
 return c instanceof JButton &&
 ((JButton)c).getText().equals("OK");
 }});
AbstractButtonTester tester =
 new AbstractButtonTester();
Tester.actionClick(button);
assertEquals("Wrong button tooltip",
 "Click to accept", button.getToolTipText());

21

Testing with Abbot demo

22

JUnit 3 features

n  Abbot requires JUnit 3
n  Only the differences between JUnit 3

and JUnit 4 are presented in the next
slides

n  The JUnit 3 jar file is included in the
abbot distribution

23

Extending TestCase
n  Each test class needs to extend class

junit.framework.TestCase

public class SomeClassTest
 extends junit.framework.TestCase {

 …
}

24

Naming vs. Annotations
n  protected void setUp()

n  The @Before method must have this signature
n  protected void tearDown()

n  The @After method must have this signature

n  public void testAdd()
public void testToString()
n  All @Test methods must have names that start

with test

n  Do not include any annotations

5

25

Test suite creation

n  Creating a test suite with JUnit 3 is also
different

n  Use the code in the next slide as a
template

import junit.framework.*;!
!
public class AllTests {!
!
 public static void main(String[] args) {!
 junit.swingui.TestRunner.run(AllTests.class);!
 }!
!
 public static Test suite() {!
 TestSuite suite = new TestSuite(”Name");!
 suite.addTestSuite(TestClass1.class);!
 suite.addTestSuite(TestClass2.class);!
 return suite;!
 }!
!
}!

