
EECS 3201:

Digital Logic Design

Lecture 12

Ihab Amer, PhD, SMIEEE, P.Eng.

2

Registers

 Collections of flip-flops with special

controls and logic

Stored values somehow related (e.g., form

binary value)

Share clock, reset, and set lines

 Examples

Shift registers

Counters

3

Four-bits Register

 Parallel load

 Clock must be inhibited from
the circuit if the contents of
the register is to be left
unchanged (enabling gate)

 Performing logic with clock
pulses inserts variable
delays and may cause the
system to go out of
synchronism

 Solution: Direct the load
control input through gates
and into the FF inputs

4

Registers with Parallel Load

5

Shift Registers

 A Register capable of shifting its content in

one or both directions is called a shift

register. It has many applications such as

serial transfer and serial addition

Serial-In/Serial-Out 4-bit shift register

6

Serial Transfer

Clock

Gating

7

Serial Adder

Refer to the text-

book for the

design of another

form of a serial

adder using JK FF

8

Universal Shift Register

9

HDL for U Shift Register
module shftreg (s1,s0,Pin,lfin,rtin,A,CLK,Clr);

 input s1,s0; //Select inputs

 input lfin, rtin; //Serial inputs

 input CLK,Clr; //Clock and Clear

 input [3:0] Pin; //Parallel input

 output [3:0] A; //Register output

 reg [3:0] A;

 always @ (posedge CLK or negedge Clr)

 if (~Clr) A = 4'b0000;

 else

 case ({s1,s0})

 2'b00: A = A; //No change

 2'b01: A = {rtin,A[3:1]}; //Shift right

 2'b10: A = {A[2:0],lfin}; //Shift left

 2'b11: A = Pin; //Parallel load input

 endcase

endmodule

Mode

Control

0

S0

1

0

1

Register

Operation

No Change

Shift Right

Shift Left

Parallel Load

0

S1

0

1

1

Behavioral

Description

10

Structural Description

module SHFTREG
(I,select,lfin,rtin,A,CLK,Clr);

 input [3:0] I; //Parallel input

 input [1:0] select; //Mode select

 input lfin,rtin,CLK,Clr; //Serial

 //inputs,clock,clear

 output [3:0] A; //Parallel output

 //Instantiate the four stages

 stage ST0
(A[0],A[1],lfin,I[0],A[0],select,CLK,Clr);

 stage ST1
(A[1],A[2],A[0],I[1],A[1],select,CLK,Clr);

 stage ST2
(A[2],A[3],A[1],I[2],A[2],select,CLK,Clr);

 stage ST3
(A[3],rtin,A[2],I[3],A[3],select,CLK,Clr);

endmodule

module stage(i0,i1,i2,i3,Q,select,CLK,Clr);

 input i0,i1,i2,i3,CLK,Clr;

 input [1:0] select;

 output Q;

 reg Q;

 reg D;

 //4x1 multiplexer

 always @ (i0 or i1 or i2 or i3 or select)

 case (select)

 2'b00: D = i0;

 2'b01: D = i1;

 2'b10: D = i2;

 2'b11: D = i3;

 endcase

 //D flip-flop

 always @ (posedge CLK or negedge Clr)

 if (~Clr) Q = 1'b0;

 else Q = D;

endmodule

11

Counters

 A register that goes through a prescribed

sequence of states upon the application of

input pulses is called a counter

 Examples of counters are ripple and

synchronous counters

12

Ripple Counters Sequence of

States

0

A0

1

0

1

0

A1

0

1

1

0

A2

0

0

0

0

A3

0

0

0

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

1
0 0 0 1

1 0 0 1

0 1 0 1

1 1 0 1

0 1 1 1

1 1 1 1

0 0 1 1

1 0 1 1 Active-low

Reset

-ve edge

trig. Clock

13

HDL for ripple counter
module ripplecounter (A0,A1,A2,A3,Count,Reset);

 output A0,A1,A2,A3;

 input Count,Reset;

//Instantiate complementing flip-flop

 CF F0 (A0,Count,Reset);

 CF F1 (A1,A0,Reset);

 CF F2 (A2,A1,Reset);

 CF F3 (A3,A2,Reset);

endmodule

//Complementing flip-flop with delay

//Input to D flip-flop = Q'

module CF (Q,CLK,Reset);

 output Q;

 input CLK,Reset;

 reg Q;

 always @ (negedge CLK or posedge Reset)

 if (Reset) Q = 1'b0;

 else Q = #2 (~Q); // Delay of 2 time units

endmodule

//Stimulus for testing ripple counter

module testcounter;

 reg Count;

 reg Reset;

 wire A0,A1,A2,A3;

//Instantiate ripple counter

 ripplecounter RC
(A0,A1,A2,A3,Count,Reset);

always

 #5 Count = ~Count;

initial

 begin

 Count = 1'b0;

 Reset = 1'b1;

 #4 Reset = 1'b0;

 #165 $finish;

 end

endmodule

Active-high

Reset

Active-low

Clock

14

Simulation Output

2 ns

15

BCD Ripple Counter (self-study)

 Q1 changes after each clock pulse

 As long as Q8 is 0, Q2 complements each
time Q1 goes from 1 to 0

 Q2 remains at 0 when Q8 is 1

 Q4 complements each time Q2 goes from 1
to 0

 Q8 remains at 0 as long as Q2 or Q4 is 0

 When both Q2 and Q4 are 1, Q8 complements
when Q1 goes from 1 to 0

 Q8 is cleared on the next -ve transition of Q1

16

Three-Decade Decimal BCD

Counter

17

Synchronous Counters

All flip flops are driven

by the same clock signal

Sequence of

States

0

A0

1

0

1

0

A1

0

1

1

0

A2

0

0

0

0

A3

0

0

0

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

1
0 0 0 1

1 0 0 1

0 1 0 1

1 1 0 1

0 1 1 1

1 1 1 1

0 0 1 1

1 0 1 1

18

Counter with Parallel Load

Clear Load Count CLK I0–In-1

n bits

n-bits Binary Counter

with Parallel Load

n bits

A0–An-1 Cout

Load inputs

Clear

X

CLK

1

0

0

Function

Clear to 0

Up-Count

No Change

0

1

1

1

Count Load

X

X

1

0

X

↑

↑

↑

Refer to the textbook for

the circuit diagram

19

HDL for Binary Counter with

Parallel Load

module counter (Count,Load,IN,CLK,Clr,A,CO);

 input Count,Load,CLK,Clr;

 input [3:0] IN; //Data input

 output CO; //Output carry

 output [3:0] A; //Data output

 reg [3:0] A;

 assign CO = Count & ~Load & (A == 4'b1111);

 always @ (posedge CLK or negedge Clr)

 if (~Clr) A = 4'b0000;

 else if (Load) A = IN;

 else if (Count) A = A + 1'b1;

 else A = A; // no change, default condition

endmodule

20

BCD Counter using Counter

with Parallel Load

A glitch occurs

with an

asynchronous

clear

21

Counter with Unused States

Self Correcting Counter

If it happens to be

in one of the

unused states,

eventually reaches

the normal count

sequences after

one or more clock

pulses

{A,B,C}

22

Generating Timing Signals

k FFs → k states k FFs → 2k states

Assuming

–ve edge-

triggering

Next lecture we will

emphasize why would

this be important

23

Johnson Counter

k FFs → 2k states

T0

T7

24

Corresponding Chapter in

Textbook

 Chapter 6 (entire chapter)

25 25

References

 Digital Design, M. Morris, Mano

 http://bawankule.com/verilogfaq/files/jhld099401.

pdf

