EECS 3201: Digital Logic Design Lecture 14

Ihab Amer, PhD, SMIEEE, P.Eng.

Modular Approach

- A digital system is a sequential logic system constructed with flip-flops and gates
- Number of states in actual digital systems is typically high
- This makes it difficult to represent large digital systems with state tables
- Hence, digital systems are typically designed using a modular approach
- A system is partitioned into modular subsystems, each of which performs some functional task
- Examples of subsystems are registers, decoders, multiplexers, arithmetic elements, and control logic
- Modules are interconnected with common data and control paths

Register Transfer Level (RTL)

- A digital system is represented at the RTL level by the following three components:
\square The set of registers in the system
\square Operations performed on data stored in registers (e.g. transfer, arithmetic, logic, and shift)
\square Control that supervises the sequence of operations in the system

Examples of RTL Statements

- $\mathrm{R} 2 \leftarrow \mathrm{R} 1$
- If(T1 = 1) then (R2 $\leftarrow \mathrm{R} 1)$
- If(T3 = 1) then (R2 $\leftarrow \mathrm{R} 1, \mathrm{R} 1 \leftarrow \mathrm{R} 2)$
- $\mathrm{R} 1 \leftarrow \mathrm{R} 1+\mathrm{R} 2$
(Add contents of R2 to R1)
- R3 $\leftarrow \mathrm{R} 3+1$
(Increment R3 by 1)
- R4 $\leftarrow \operatorname{shr} \mathrm{R} 4$
(Shift right R4)
- R5 $\leftarrow 0$

RTL in HDL

assign $S=A+B ;$

- Combinational
\rightarrow Logic
always @ (A or B)
$S=A+B ;$
Sequential
- Logic
always @ (posedge clock) always @ (negedge clock)
begin
$R A=R A+R B ;$
$R D=R A$
end
begin

$$
\begin{aligned}
& R A<=R A+R B ; \\
& R D<=R A
\end{aligned}
$$

end
. Accurately models
synchronous sequential
circuits

Looping Statements

```
//description of 2x4 decoder
//using for-loop statement
module decoder (IN, Y);
    input [1:0] IN; //Two binary inputs
    output [3:0] Y; //Four binary outputs
    reg [3:0] Y;
    integer I; //control variable for loop
    always @ (IN)
\[
\begin{aligned}
& \text { for }(I=0 ; I<=3 ; I=I+1) \\
& \text { if }(I N==I) Y[I]=1 ; \\
& \text { else } Y[I]=0 ;
\end{aligned}
\]
```

endmodule

Looping statements (e.g. repeat, forever, while, and for) must appear inside an initial or always block

Refer to Mano textbook for

 examples of other types of loops$$
\begin{aligned}
& \text { if }(\mathbb{I N}==00) Y[0]=1 ; \text { else } Y[0]=0 ; \\
& \text { if }(\mathbb{I N}==01) Y[1]=1 ; \text { else } Y[1]=0 ; \\
& \text { if }(\mathbb{I N}==10) Y[2]=1 ; \text { else } Y[2]=0 ; \\
& \text { if }(\mathbb{I N}==11) Y[3]=1 ; \text { else } Y[3]=0 ;
\end{aligned}
$$

Structure of a Typical Digital System

Status conditions

Control and Datapath Interaction

Control Unit (Control)

- Controls Data Movements in the Execution Unit by Switching Multiplexers and Enabling or Disabling Resources
- Follows Some 'Program’ or Schedule
- Often Implemented as Finite State Machine or collection of Finite State Machines

Execution Unit (Datapath)

- Provides All Necessary Resources and Interconnects Among Them to Perform Specified Task
- Examples of Resources
\square Adders, Multipliers, Registers, Memories, etc.

Algorithmic State Machine (ASM)

- Representation of a Finite State Machine that is suitable for digital systems with a larger number of inputs, outputs, and states compared to FSMs that are expressed using state diagrams and state tables

Elements Used in ASM Chartss

 (1/2)

Elements Used in ASM Charts (2/2)

Conditional Box

From exit path of decision box

(a) General description

(b) Example with conditional box

ASM Block

State Diagram Equivalent to the ASM Chart

Timing Considerations

- In the previous ASM block, the following operations occur in synchronism during the clock edge transition (simultaneously):
\square Register A is incremented -.-.-.-. Operations in
\square If $E=1$, register R is cleared $\cdots \cdots$ datapath
\square Control transfers to the next state \cdots logic

Design Example

- Design a digital system with two flip-flops, E \& F, and one 4-bit binary counter $A\left(A_{4} A_{3} A_{2} A_{1}\right)$. A start signal S initiates system operation by clearing the counter A and flip-flop F. The counter is then incremented by one starting from the next clock pulse and continues to increment until the operations stop. Bits A_{3} and A_{4} determine the sequence of operations as follows:
- If $A_{3}=0, E$ is cleared and count continues
- If $A_{3}=1, E$ is set to 1 ; then if $A_{4}=0$, count continues, but if $A_{4}=1, F$ is set to 1 on the next clock pulse and the system heads to initial state the clock pulse after
- Then if $S=0$, the system remains in the initial state, but if $S=1$, the operation cycle repeats

ASM Chart

Sequence of Operations

Counter
Flip-Flops

	A_{4}	A_{3}	A_{2}	A_{1}	E	F	Conditions	State
	0	0	0	0	1	0	$\mathrm{A}_{3}=0, \mathrm{~A}_{4}=0$	T_{1}
tor	0	0	0	1	0	0		
s	0	0	1	0	0	0		
	0	0	1	1	0	0		
$\xrightarrow[\substack { i=0 \\ \begin{subarray}{c}{i=0{ i = 0 \\ \begin{subarray} { c } { i = 0 } }\end{subarray}]{\substack{\text { a }}}$	0	1	0	0	0	0	$\mathrm{A}_{3}=1, \mathrm{~A}_{4}=0$	
7.	0	1	0	1	1	0		
$\stackrel{A-A+1}{ }$	0	1	1	0	1	0		
	0	1	1	1	1	0		
$\stackrel{+}{\text { e-0 }}$ (t-1	1	0	0	0	1	0	$\mathrm{A}_{3}=0, \mathrm{~A}_{4}=1$	
雍。	1	0	0	1	0	0		
\sum_{2}^{1}	1	0	1	0	0	0		
	1	0	1	1	0	0		
	1	1	0	0	0	0	$\mathrm{A}_{3}=1, \mathrm{~A}_{4}=1$	
	1	1	0	0	1	0		T_{2}
	1	1	0	0	1	1		T_{01}

Datapath of Design

RTL Description

(a) State diagram for control
T_{0} : if $(S=1)$ then $A \leftarrow 0, F \leftarrow 0$

$$
\mathrm{T}_{1}: A \leftarrow A+1
$$

$$
\text { if }\left(A_{3}=1\right) \text { then } \mathrm{E} \leftarrow 1
$$

$$
\text { if }\left(A_{3}=0\right) \text { then } \mathrm{E} \leftarrow 0
$$

$$
\mathrm{T}_{2}: F \leftarrow 1
$$

(a) Register transfer operations

State Table for Control

Present -State Symbol	Present State		Inputs			Next State		Outputs		
	G_{1}	G_{0}	S	A_{3}	A_{4}	G_{1}		T_{0}	T	T
T_{0}	0	0	0	X	X	0	0	1	0	0
T_{0}	0	0	1	X	X	0	1	1	0	0
T_{1}	0	1	X	0	X	0	1	0	1	0
T	0	1	X	1	0	0	1	0	1	0
T	0	1	X	1	1	1	1	0	1	0
T_{2}	1	1	X	X	X	0	0	0	0	1

Control Logic
By Inspection

References

- Digital Design, M. Morris, Mano

