EECS 3201: Digital Logic Design Lecture 17

Ihab Amer, PhD, SMIEEE, P.Eng.

Flash Back!

Full Adder

Basic Carry-Ripple Adder (CRA)

Carry-ripple adder.

$$
T_{C R A}=(n-1) t_{c}+\max \left(t_{c}, t_{s}\right)
$$

About Carries

- At position i of the addition, consider the relation between c_{i+1} and c_{i}. There are three mutually exclusive cases. Each of those cases rely on x_{i} and y_{i} only, and hence, can be performed in parallel (for all i)

Carry-Out Cases

Case	x_{i}	y_{i}	$x_{i}+y_{i}$	c_{i+1}	Comment
1	0	0	0	0	kill (stop) carry-in
2	0	1	1	c_{i}	propagate carry-in
	1	0	1	c_{i}	propagate carry-in
3	1	1	2	1	generate carry-out

Case 1 (Kill): $k_{i}=x_{i}^{\prime} y_{i}^{\prime}=\left(x_{i}+y_{i}\right)^{\prime}$
Case 2 (Propagate): $p_{i}=x_{i} \oplus y_{i}$
Case 3 (Generate): $g_{i}=x_{i} y_{i}$
Then

$$
c_{i+1}=g_{i}+p_{i} c_{i}=x_{i} y_{i}+\left(x_{i} \oplus y_{i}\right) c_{i}
$$

Alternative (simpler) expression:

$$
c_{i+1}=g_{i} \boldsymbol{+} a_{i} c_{i}
$$

Since $a_{i}=k_{i}^{\prime}$ we call it "alive"

Carry Chains

Two types:

1 -carry chain consisting of carry=1
0 -carry chain consisting of carry $=0$

i	9	8	7	6	5	4	3	2	1	0
x_{i}	1	0	1	0	1	1	1	1	0	0
y_{i}	0	0	0	1	0	1	0	0	1	0
	p	k	p	p	p	g	p	p	p	k
	a		a							
c_{i+1}	0	\leftarrow	1	$\leftarrow 1$	$\leftarrow 1 \leftarrow 1$	0	$\leftarrow 0$	$\leftarrow 0$	$\leftarrow 0$	

Generalization to Group of Bits

$$
c_{j+1}=g_{(j, i)}+p_{(j, i)} c_{i}=g_{(j, i)}+a_{(j, i)} c_{i}
$$

or, for $i=0$

$$
c_{j+1}=g_{(j, 0)}+p_{(j, 0)} c_{0}=g_{(j, 0)}+a_{(j, 0)} c_{0}
$$

Recursive combining of subranges of variables:

$$
\begin{aligned}
g_{(f, d)} & =g_{(f, e)}+p_{(f, e)} g_{(e-1, d)}=g_{(f, e)}+a_{(f, e)} g_{(e-1, d)} \\
p_{(f, d)} & =p_{(f, e)} p_{(e-1, d)}
\end{aligned}
$$

Generalization (Cont'd)

Computing $\left(g_{(f, d):} \boldsymbol{p}_{(f, d)}\right)$.

Example

- Obtain bit \#13 of the sum of the following 16 -bit operands ($c_{\text {in }}=0$)

$$
\begin{aligned}
& x=0110|0010| 1100 \mid 0011 \\
& y=1011|1101| 0001 \mid 1110
\end{aligned}
$$

$$
\mathrm{p}_{(12,12)}=1, \mathrm{p}_{(11,8)}=1, \mathrm{k}_{(7,4)}=1, \mathrm{~g}_{(3,0)}=1
$$

$$
\longrightarrow \mathrm{p}_{(12,8)}=1, \mathrm{k}_{(7,0)}=\mathrm{k}_{(7,4)}+\mathrm{p}_{(7,4)} \mathrm{k}_{(3,0)}=1
$$

$$
\longrightarrow \mathrm{k}_{(12,0)}=1
$$

$$
\longrightarrow \mathrm{c}_{13}=\mathrm{g}_{(12,0)}+\mathrm{p}_{(12,0)} \mathrm{c}_{\text {in }}=0
$$

$$
\longrightarrow \mathrm{s}_{13}=\mathrm{x}_{13} \oplus \mathrm{y}_{13} \oplus \mathrm{c}_{13}=0
$$

Fast Two-Operand Addition

- Conventional Number System (Carry Propagate Adders - CPA)
\square Switched Carry-Ripple Adder
\square Carry-Skip Adder
\square Carry Lookahead Adder
\square Prefix Adder
\square Carry-Select Adder and Conditional-Sum Adder
\square Variable-Time Adder
- Redundant Number System (Totally Parallel Adders TPA); Adders with limited carry propagation
\square Carry-Save Adder
\square Signed Digit Adder

Switched Carry-Ripple (Manchester) Adder

$$
T_{S R A}=t_{s w}+(n-1) t_{p}+(n / m) t_{b u f}+t_{s}
$$

These maybe

- special transistors

Conditional Adder

Two adders use shared circuits

(b)
(a)
(a) Obtaining conditional outputs. (b) Combined conditi onal adder.

Carry-Select Adder

Conditional-Sum Adder

$$
T_{c o n d-s u m}=t_{a d d, m}+\left(\log _{2}(n / m)\right) t_{m u x}
$$

Numerical Example

$$
\begin{array}{rr}
X_{L}=0011 & X_{R}=0111 \\
Y_{L}=1010 & Y_{R}=1001 \\
\left(c_{L}^{0}, S_{L}^{0}\right)=(0,1101) & \left(c_{R}^{0}, S_{R}^{0}\right)=(1,0000) \\
\left(c_{L}^{1}, S_{L}^{1}\right)=(0,1110) & \left(c_{R}^{1}, S_{R}^{1}\right)=(1,0001)
\end{array}
$$

Combining we obtain

$$
\begin{aligned}
& \left(c^{0}, S^{0}\right)=(0,11100000) \\
& \left(c^{1}, S^{1}\right)=(0,11100001)
\end{aligned}
$$

Example: 16-bit ConditionalSum Adder ($\mathrm{m}=4$)

(UN IVERSSITEE

(UNUVERSITEE

Example

X	01	01	01	11
Y	10	10	11	11

- Conditional-sum for eight bits with $m=2$

S^{0}	11	11	00	10
c^{0}	0	0	1	1
S^{1}	00	00	01	11
c^{1}	1	1	1	1
S^{0}	11	11	01	10
c^{0}	0		1	
S^{1}	00	00	01	11
c^{1}	1		1	
S^{0}	00	00	01	10
c^{0}	1			
S^{1}	00	00	01	11
c^{1}	1			

References

- Milos D. Ercegovac and Tomas Lang, "Digital Arithmetic", Morgan Kaufmann Publishers, an imprint of Elsevier Science, 2004

