

EECS 3201: Digital Logic Design Lecture 17

Ihab Amer, PhD, SMIEEE, P.Eng.

Flash Back!

YORK UNIVERSITÉ

Basic Carry-Ripple Adder (CRA)

Carry-ripple adder.

$$T_{CRA} = (n-1)t_c + \max(t_c, t_s)$$

About Carries

At position *i* of the addition, consider the relation between c_{i+1} and c_i. There are three mutually exclusive cases. Each of those cases rely on x_i and y_i only, and hence, can be performed in parallel (for all *i*)

Carry-Out Cases

Case	x_i	y_i	$x_i + y_i$	c_{i+1}	Comment
1	0	0	0	0	kill (stop) carry-in
2	0	1	1	c_i	propagate carry-in
	1	0	1	c_i	propagate carry-in
3	1	1	2	1	generate carry-out

Case 1 (Kill):
$$k_i = x'_i y'_i = (x_i + y_i)'$$

Case 2 (Propagate): $p_i = x_i \oplus y_i$
Case 3 (Generate): $g_i = x_i y_i$
Then

$$c_{i+1} = g_i + p_i c_i = x_i y_i + (x_i \oplus y_i) c_i$$

Alternative (simpler) expression:

$$c_{i+1} = g_i + a_i c_i$$

Since $a_i = k'_i$ we call it "alive"

Carry Chains

Two types:

1-carry chain consisting of carry=1 0-carry chain consisting of carry=0

i	9	8	7	6	5	4	3	2	1	0
x_i	1	0	1	0	1	1	1	1	0	0
y_i	0	0	0	1	0	1	0	0	1	0
	p	k	p	p	p	g	p	p	p	k
	a		a	a	a	a	a	a	a	
c_{i+1}	0 ~	0	1 ~	$1 \leftarrow$	$1 \leftarrow$	1	$0 \leftarrow$	0 ~	$0 \leftarrow$	0

Generalization to Group of Bits

$$c_{j+1} = g_{(j,i)} + p_{(j,i)}c_i = g_{(j,i)} + a_{(j,i)}c_i$$

or, for i = 0

$$c_{j+1} = g_{(j,0)} + p_{(j,0)}c_0 = g_{(j,0)} + a_{(j,0)}c_0$$

Recursive combining of subranges of variables:

$$g_{(f,d)} = g_{(f,e)} + p_{(f,e)}g_{(e-1,d)} = g_{(f,e)} + a_{(f,e)}g_{(e-1,d)}$$
$$p_{(f,d)} = p_{(f,e)}p_{(e-1,d)}$$

Generalization (Cont'd)

Computing $(g_{(f,d)}, p_{(f,d)})$.

Example

• Obtain bit #13 of the sum of the following 16-bit operands ($c_{in} = 0$)

x = 0110|0010|1100|0011

y = 1011|1101|0001|1110

$$p_{(12,12)} = 1, p_{(11,8)} = 1, k_{(7,4)} = 1, g_{(3,0)} = 1$$

$$p_{(12,8)} = 1, k_{(7,0)} = k_{(7,4)} + p_{(7,4)}k_{(3,0)} = 1$$

$$k_{(12,0)} = 1$$

$$c_{13} = g_{(12,0)} + p_{(12,0)}c_{in} = 0$$

$$s_{13} = x_{13} \oplus y_{13} \oplus c_{13} = 0$$

Fast Two-Operand Addition

- Conventional Number System (Carry Propagate Adders – CPA)
 - Switched Carry-Ripple Adder
 - Carry-Skip Adder
 - Carry Lookahead Adder
 - Prefix Adder
 - Carry-Select Adder and Conditional-Sum Adder
 - Variable-Time Adder
- Redundant Number System (Totally Parallel Adders TPA); Adders with limited carry propagation
 - □ Carry-Save Adder
 - Signed Digit Adder

Switched Carry-Ripple (Manchester) Adder

Conditional Adder

(a) Obtaining conditional outputs. (b) Combined conditi onal adder.

Carry-Select Adder

 $T_{CSEL} = t_{add,m} + \left(\frac{n}{m} - 1\right)t_{mux}$

Conditional-Sum Adder

 $T_{cond-sum} = t_{add,m} + (log_2(n/m))t_{mux}$

Numerical Example

$$\begin{aligned} X_L &= 0011 & X_R = 0111 \\ Y_L &= 1010 & Y_R = 1001 \\ (c_L^0, S_L^0) &= (0,1101) & (c_R^0, S_R^0) = (1,0000) \\ (c_L^1, S_L^1) &= (0,1110) & (c_R^1, S_R^1) = (1,0001) \end{aligned}$$

Combining we obtain

$$(c^0, S^0) = (0, 11100000)$$

 $(c^1, S^1) = (0, 11100001)$

16

Example: 16-bit Conditional-Sum Adder (m = 4)

Example

Conditional-sum for eight bits with m = 2

X	01	01	01	11
Y	10	10	11	11
S^0	11	11	00	10
c^0	0	0	1	1
S^1	00	00	01	11
c^1	1	1	1	1
S^0	11	11	01	10
c^0	0		1	
S^1	00	00	01	11
c^1	1		1	
0				
S^0_{-}	00	00	01	10
c^0	1			
S^1	00	00	01	11
c^1	1			

References

 Milos D. Ercegovac and Tomas Lang, "Digital Arithmetic", Morgan Kaufmann Publishers, an imprint of Elsevier Science, 2004