

EECS 3201: Digital Logic Design Lecture 4

Ihab Amer, PhD, SMIEEE, P.Eng.

What is a HDL?

- A high-level computer language that can describe digital systems in textual form
- Two applications of HDL processing:
 - □ Logic Simulation
 - Logic Synthesis

HDL Applications

- □ Logic Simulation
 - A simulator translates the HDL description to a readable output such as *timing diagram*
 - It predicts how the hardware will work before it is actually fabricated
 - Functional errors can be corrected before actual fabrication
 - Stimulus that tests the design is called test-bench (also written in HDL)
- Logic Synthesis
 - Deriving the gate-level netlist from the HDL
 - Typically accompanied with optimization, and automated with computer software
 - Restrictions on coding style for RTL model
 - The outcome (netlist) is tool dependent

EECS 3201

IEEE-Supported HDL's

VHDL

- VHSIC HDL
- Based on Ada
- Department of defense (DARPA) mandated language
- Generally, considered more difficult to learn

Verify Logic

Veriloc

- Based on C
- Started as a Gateway Design proprietary language then later bought by Cadence
- Generally, considered easier to learn

Example (Simple Circuit)

Gate Delays

module ct_with_delay (A, B, C, x, y);

input A, B, C;	Time (ns)	Input A B C	Output y e x
wire e. Ooto dolou in (no)	_	000	101
Gate delay in (ns)	_	111	101
and #(30) g1(e, A, B);	10	111	001
or #(20) g3(x, e, y);	20	111	001
not #(10) g2(y, C);	30	111	010
endmodule	40	111	010
	50	111	011

Simulation Output

Timing Diagram

	Ons 20ns 40ns 60ns 80ns 100ns 120ns 140ns 160ns 180ns
stimcrct.A	
stimcrct.B	
stimcrct.C	
stimcrct.x	
stimcrct.y	

Boolean Expression

endmodule

Verilog HDL Operators

Refer to table 4-10 of Mano textbook for a list of Verilog HDL Operators

Three-State Gates

Four-Valued Logic

Verilog Logic Values

The underlying data representation allows for any bit to have one of four values:

 \Box 0, 1, z (high impedance), and x (unknown)

No Question!

- A possible output from tri-state gates
- It is a real electric effect

- Not a real value
- Maybe 0, 1, z, or in the state of change
- Simulator cannot determine the value, and perhaps you should worry!

Truth Tables for Primitive Gates

and	0	1	Х	Z	
0	0	0	0	0	
1	0	1	Х	Х	
х	0	Х	Х	Χ	
Z	0	Х	Х	Х	

or	0	1	Х	Z
0	0	1	Х	Х
1	1	1	1	1
x	Х	1	Х	Х
Z	Х	1	Х	Х

xor	0	1	Х	Z	not	input	output
0	0	1	Х	Х		0	1
1	1	0	Х	Х		1	0
Х	х	Х	Х	Х		Х	Х
Z	х	Х	Х	Х		Z	Х

Verilog Design Styles

 $OUT = (A \cdot select) + (B \cdot select')$

Dataflow Model

module mux2x1_df1 (A, B, select, OUT);

input A, B, select; **output** OUT;

assign OUT = (A & select) | (B & ~select);

endmodule

Continuous Assignment

```
module mux2x1_df2 (A, B, select, OUT);
```

```
input A, B, select; output OUT;
```

assign OUT = select ? A : B;

endmodule

Behavioral Model

Mostly used with sequential circuits

Structural Design – Recap

- Structural design is the simplest to understand. This style is the closest to schematic capture and utilizes simple building blocks to compose logic functions
- Components are interconnected in a hierarchical manner
- Structural descriptions may connect simple gates (gate-level) or complex, abstract components
- Useful when expressing a design that is naturally composed of sub-blocks

Data-Flow Design – Recap

- Describes how data moves through the system and the various processing steps
- Data Flow uses series of continuous assignment statements
- Data Flow is most useful style when series of Boolean equations can represent a logic

Behavioral Design – Recap

- It accurately models what happens on the inputs and outputs of the black box (no matter what is inside and how it works)
- This style uses *always* statements in *Verilog*
- Procedural statements in an *always* block executes sequentially. However, the *always* block itself executes concurrently with other concurrent statements in the same module (instances, continuous assignments, and other *always* statements)
- Typically used for test-benches or high-level implementations to drive logic synthesis tools

Nets, Variables, Parameters, and Directives

- Net: Physical wire between modules
 - □ A *wire* is the most commonly-used net
- Variable: Stores a value during a Verilog program's execution, and needs not have physical significance in a circuit
 - □ A *reg* is the most commonly-used variable
- Parameter: A facility provided by Verilog for defining named constants within a module, to improve readability and maintainability
 - □ E.g. parameter ESC = 7′b0011011;
- Directive: To control the compilation process
 - □ 'include and 'define are the most commonly-used directives

Logical Vs Bitwise Operators

Examples of Ambiguities: (2'b01 && 2'b10) <u>Vs</u> (2'b01 & 2'b10) !(5) <u>Vs</u> ~(5)

Ok... Design is done... How should I test it?

- Same as what you would do to test a SW program:
 - Give it some inputs, and see if it does what you expect
 - After testing, do you guarantee that the program is bug free? NO!
 - But, to the extent possible, you have determined that the program does what you want it to do
- Same happens in HW design, you <u>simulate</u> the system's behavior with some input stimulus

Test Bench

I am sick of this MUX!!


```
module mux2x1_df2 (A, B, select, OUT);
    input A, B, select;
    output OUT;
    assign OUT = select ? A : B;
endmodule
```


Design Module

Stimulus Module

Simulation Output

💁 VeriLogger Pro - [Diagram - C:\SYNAPT~1\untitled1.tim*]					
📇 File Export Edit E	us Libraries Project Editor Simulate Report View Options Window Help				
🖻 🦛 🕼 🗏 🛎	🛛 🍳 🍳 🍭 🔹 Sim Dgm 🔹 💋 🗐 🚽 🔸 🕨 SET 🔤				
Sim Diagram & Pr	oject 🗸 Auto Run 🔃 🕨 🕪 🚥 🕅 🔍 🛛 🛛 S s 🔃				
Add Signal Add Bus Add Clock Add Spacer	Delay Setup Sample HIGH LOW TRI VAL INVal WHI WLO HEX Zoom In Zoom Full Hold Text Marker → → → → → ↓				
134.0ns -32.00ns	Ons , 50ns , 100ns , 150ns , 200ns , 250ns				
stimcrct.A					
stimerct.B					
stimcrct.select					
stimeret.OUT					

Examples of Stimulus Generation

initial begin	
	A = 0; B = 0;
#10	A = 1;
#20	A = 0; B = 1;
end	

3-bits Truth Table

References

- Lecture Notes of Dr. Sebastian Magierowski Fall 2013
- Digital Design, 3rd Edition, M. Morris, Mano
- Digital Design, 4th Edition, John Wakerly
- cpk.auc.dk/education/SSU-2007/mm10/ssu_mm10.pdf
- www.ece.cmu.edu/~thomas/VSLIDES.pdf
- http://ece.gmu.edu/coursewebpages/ECE/ECE4 48/S10/