
EECS 3201:

Digital Logic Design

Lecture 4

Ihab Amer, PhD, SMIEEE, P.Eng.

2

What is a HDL?

 A high-level computer language that can describe

digital systems in textual form

 Two applications of HDL processing:

 Logic Simulation

 Logic Synthesis

3

HDL Applications
 Logic Simulation

 A simulator translates the HDL description to a readable

output such as timing diagram

 Functional errors can be corrected before actual fabrication

 It predicts how the hardware will work before it is actually

fabricated

 Stimulus that tests the design is called test-bench (also

written in HDL)

 Logic Synthesis

 Deriving the gate-level netlist from the HDL

 Typically accompanied with optimization, and automated

with computer software

 Restrictions on coding style for RTL model

 The outcome (netlist) is tool dependent

4

IEEE-Supported HDL’s

VHDL Verilog

 VHSIC HDL

 Based on Ada

 Department of defense
(DARPA) mandated
language

 Based on C

 Started as a Gateway
Design proprietary
language then later
bought by Cadence

 Verify Logic

EECS 3201

 Generally, considered
more difficult to learn

 Generally, considered
easier to learn

5

Example (Simple Circuit)

module smpl_ct (A, B, C, x, y);

endmodule

smpl_ct
A
B
C

x

y

input A, B, C;

output x, y;

wire e;

and g1(e, A, B);

not g2(y, C);

or g3(x, e, y);

Module name Ports names

Ports

modes
Internal connection

Punctuation

Primitive

gates

Optional

gate-name

Gate output

Gate inputs

6

Gate Delays
module ct_with_delay (A, B, C, x, y);

endmodule

input A, B, C;

output x, y;

wire e;

and #(30) g1(e, A, B);

not #(10) g2(y, C);

or #(20) g3(x, e, y);

Delay = 20 ns
Delay = 30 ns

Delay = 10 ns

Gate delay in (ns)

Time

(ns)

Input

A B C

Output

y e x

0 0 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

–

10

20

30

40

50

1 0 1

1 0 1

0 0 1

0 0 1

0 1 0

0 1 0

0 1 1

–

7

Simulation Output

Timing Diagram

8

Boolean Expression

module ct_bln (A, B, C, x, y);

endmodule

input A, B, C;

output x, y;

assign x = (A & B) | ~C;
Keyword

AND

OR

NOT

9

Verilog HDL Operators

 Refer to table 4-10 of Mano textbook for a

list of Verilog HDL Operators

10

Three-State Gates

Tri-state buffer

if1 vs. if0 tri-state

buffers

if1 vs. if0 tri-state

inverters

11

Four-Valued Logic

 Verilog Logic Values

The underlying data representation allows for

any bit to have one of four values:

0, 1,

No Question!

z (high impedance), and x (unknown)

- A possible output from tri-state gates

- It is a real electric effect

- Not a real value

- Maybe 0, 1, z, or in the state of

change

- Simulator cannot determine

the value, and perhaps you

should worry!

12

Truth Tables for Primitive Gates

0

1
x

z

0

0
0

0

0

1
x

x

0

x
x

x

0

x
x

x

0 1 x z and

0

1
x

z

0

1
x

x

1

0
x

x

x

x
x

x

x

x
x

x

0 1 x z xor

0

1
x

z

1

0
x

x

input output not

0

1
x

z

0

1
x

x

1

1
1

1

x

1
x

x

x

1
x

x

0 1 x z or

13

Verilog Design Styles

Components and

interconnects

structural

Verilog Design

Styles

dataflow behavioral

• Registers

• State machines

Mostly Sequential circuits

Subset most suitable for synthesis

• Testbenches

E.g. Gate-level

Modeling

Continuous

Assignment

What is inside?
What happens inside?

14

Example – 2:1 MUX

select

B

A

OUT

select OUT

B

A 1

0

OUT = (A . select) + (B . select′)

15

Gate-Level Model

module mux2x1_gl (A, B, select, OUT);

endmodule

input A, B, select;

output OUT;

wire s_comp, c, d;

not g1(s_comp, select);

and g2(c,select,A);

and g3(d,s_comp,B);

s_comp

OUT

select

B

A

d

c
or g4(OUT,c,d);

Components

and

Interconnects

16

Dataflow Model

module mux2x1_df1 (A, B, select, OUT);

endmodule

input A, B, select;

output OUT;

assign OUT = (A & select) | (B & ~select);

Continuous

Assignment

module mux2x1_df2 (A, B, select, OUT);

endmodule

input A, B, select;

output OUT;

assign OUT = select ? A : B;

Another

Dataflow Model

17

Behavioral Model

module mux2x1_bh (A, B, select, OUT);

endmodule

input A, B, select;

output OUT;

always @ (select or A or B)

reg OUT;

if (select == 1) OUT = A;

else OUT = B;

Sensitivity List

Equality Symbol

Can be written as:

if (select) …

Retains its

value until

a new

value is

assigned

Executes every time

there is a change in

any of the variables

in the sensitivity list

Mostly used

with sequential

circuits

Procedural

Assignment

18

Structural Design – Recap

 Structural design is the simplest to
understand. This style is the closest to
schematic capture and utilizes simple
building blocks to compose logic functions

 Components are interconnected in a
hierarchical manner

 Structural descriptions may connect simple
gates (gate-level) or complex, abstract
components

 Useful when expressing a design that is
naturally composed of sub-blocks

19

Data-Flow Design – Recap

 Describes how data moves through the

system and the various processing steps

 Data Flow uses series of continuous

assignment statements

 Data Flow is most useful style when series

of Boolean equations can represent a logic

20

Behavioral Design – Recap

 It accurately models what happens on the inputs and
outputs of the black box (no matter what is inside and
how it works)

 This style uses always statements in Verilog

 Procedural statements in an always block executes
sequentially. However, the always block itself executes
concurrently with other concurrent statements in the
same module (instances, continuous assignments, and
other always statements)

 Typically used for test-benches or high-level
implementations to drive logic synthesis tools

21

Nets, Variables, Parameters,

and Directives

 Net: Physical wire between modules
 A wire is the most commonly-used net

 Variable: Stores a value during a Verilog program’s
execution, and needs not have physical significance in a
circuit
 A reg is the most commonly-used variable

 Parameter: A facility provided by Verilog for defining
named constants within a module, to improve readability
and maintainability
 E.g. parameter ESC = 7′b0011011;

 Directive: To control the compilation process
 ′include and ′define are the most commonly-used directives

22

Logical Vs Bitwise Operators

 Examples of Ambiguities:

(2′b01 && 2′b10) Vs (2′b01 & 2′b10)

 !(5) Vs ~(5)

23

Ok… Design is done…

How should I test it?

 Same as what you would do to test a SW

program:

 Give it some inputs, and see if it does what you

expect

 After testing, do you guarantee that the program is

bug free?

 But, to the extent possible, you have determined that

the program does what you want it to do

 Same happens in HW design, you simulate the

system’s behavior with some input stimulus

NO!

24

Test Bench

module testcircuit;

reg TA, TB, Tselect;

wire TOUT;

circuit cr (TA, TB, Tselect, TOUT);

module circuit (A, B, select, OUT);

input A, B, select;

output OUT;

Stimulus Module Design Module

25

I am sick of this MUX!!

module mux2x1_df2 (A, B, select, OUT);

endmodule

input A, B, select;
output OUT;
assign OUT = select ? A : B;

module stimcrct;

endmodule

reg A, B, select;

wire OUT;
mux2x1_df2 mux (A, B, select, OUT);

initial
begin

end

A = 1'b0; B = 1'b1; select = 1'b0;

A = 1'b0; B = 1'b1; select = 1'b1;
#100

#100 $finish;

Stimulus Module

Design Module

Instance of

design module

Executes only

once at t = 0

Terminates

simulation

Procedural Assignment –

used with “reg”

26

Simulation Output

27

Examples of Stimulus Generation

initial
begin

end

A = 0; B = 0;

#20 A = 0; B = 1;
#10 A = 1;

initial
begin

end

D = 3′b000;

#10 D = D + 3′b001;

 repeat (7)

3-bits Truth Table

28

References

 Lecture Notes of Dr. Sebastian Magierowski –
Fall 2013

 Digital Design, 3rd Edition, M. Morris, Mano

 Digital Design, 4th Edition, John Wakerly

 cpk.auc.dk/education/SSU-

2007/mm10/ssu_mm10.pdf

 www.ece.cmu.edu/~thomas/VSLIDES.pdf

 http://ece.gmu.edu/coursewebpages/ECE/ECE4

48/S10/

