

EECS 3201: Digital Logic Design Lecture 6

Ihab Amer, PhD, SMIEEE, P.Eng.

Synthesis by Boolean Algebra

- We used a combination of Boolean theorems to implement more efficient circuits
 - not obvious how to apply these
 - often tedious
- Karnaugh Map a much more systematic method
 - a graphical approach
 - a judicious application of the combining property
 - a•b + a•b = a
 - $(a + b) \cdot (a + \overline{b}) = a$
 - combine terms with complementary variables

Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically
- $PA + P\overline{A} = P$ (combining property)
- Translate truth table into grid with corresponding
- K-map arranged such that adjacent grids vary by only one literal

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

K-Map

- Circle 1's in adjacent squares
- In Boolean expression, include only literals whose true and complement form are *not* in the circle

Α	В	С	Y	
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	0	

K-Map Rules

- Every 1 must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges
- A "don't care" (X) is circled only if it helps minimize the equation

K-Map Minimization Technique

- It is kind of a greedy approach
- Start by circling the largest possible #of 1's (according to the rules)
- Look at the remaining 1's, and circle the largest possible #of remaining 1's (your circle is allowed to cover 1's that were circled before)
- Stop when every 1 is circled at least once

3-Input K-Map

Example

$f(x_1, x_2, x_3) = \Sigma m(1, 3, 4, 6, 7)$

4-Input K-Map

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

 $Y = \overline{A}C + \overline{B}\overline{D} + \overline{A}BD + A\overline{B}\overline{C}$

K-Map with Don't Cares

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	Х
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Х
1	0	1	1	Х
1	1	0	0	Х
1	1	0	1	Х
1	1	1	0	Х
1	1	1	1	Х

An Aside on Don't Cares

Example: Priority Circuit
Output asserted
corresponding to
most significant
TRUE input

A ₃	A_2	A1	Ao	Y ₃	Υ ₂	Y	Yo
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

An Aside on Don't Cares

Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

1-bit Addition – The Half Adder

Multi-Bit Addition

Generated carries —	▶ 1110			 c_{i+1}	c_i	
$X = x_4 x_3 x_2 x_1 x_0$	01111	(15) ₁₀		 	x_i	
$+ Y = y_4 y_3 y_2 y_1 y_0$	+ 0 1 0 1 0	$+(10)_{10}$		 	y_i	
$S = s_4 s_3 s_2 s_1 s_0$	11001	(25) ₁₀	-	 	s _i	

Bit position *i*

1-bit Addition – The Full Adder

• A straightforward schematic

S = C_{out} =

Full Adder with 2 half adders

Carry-Ripple Adder

Adder/Subtractor

References

Lecture Notes of Dr. Sebastian Magierowski – Fall 2013