EECS 3201: Digital Logic Design Lecture 9

Ihab Amer, PhD, SMIEEE, P.Eng.

Progress so far...

Digital Logic Classification

Think about this...

With the info we encountered so far, can we build this?

No!

1. "State" - i.e. the circuit should have memory
2. The o/p changes by an i/p "event" (pushing a button) rather than an input "value" (level)

What does it take?

- Ability to store digital state

- Memory stores current state
- Combinational Logic computes
\square Next State (from input, current state)
\square Output (from input, current state)
- State changes on LOAD control input

What is a Latch?

SR Latch

C	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	$Q=0 ;$ Reset state
1	1	0	$Q=1 ;$ set state
1	1	1	Indeterminate

(a) Logic diagram
(b) Function table

D Latch

C	D	Next state of Q
0	X	No change
1	0	$Q=0 ;$ Reset state
1	1	$Q=1 ;$ Set state

(a) Logic diagram
(b) Function table

HDL for D Latch

```
module D_latch (Q,D,control);
    output Q;
    input D,control;
    reg Q;
    always @ (control or D)
    if (control) Q = D; //Same as: if (control == 1)
endmodule
```


Lets try this out...

$$
\begin{aligned}
& \mathrm{G}=1 \longrightarrow \text { Latch transparent } \\
& \mathrm{G}=0 \longrightarrow \text { Latch stores state }
\end{aligned}
$$

Special timing considerations should be taken!

Flakey Control System

Here is a strategy to save a couple of dollars in the coming holidays!

Flakey Control System

Here is a strategy to save a couple of dollars in the coming holidays!

Flakey Control System

Here is a strategy to save a couple of dollars in the coming holidays!

Escapement Strategy

The Solution:
Add two gates and only open one at a time

Escapement Strategy

The Solution:
Add two gates and only open one at a time

Escapement Strategy

The Solution:
Add two gates and only open one at a time

Escapement Strategy

The Solution:
Add two gates and only open one at a time

Escapement Strategy

The Solution:
Add two gates and only open one at a time

Escapement Strategy

The Solution:
Add two gates and only open one at a time

Escapement Strategy

The Solution:
Add two gates and only open one at a time

Escapement Strategy

The Solution:
Add two gates and only open one at a time

Escapement Strategy

The Solution:
Add two gates and only open one at a time

Escapement Strategy

The Solution:
Add two gates and only open one at a time

Key: At no time is there an open path through both gates

Back to Digital Systems...

Master-Slave Flip-Flop
(a) Response to positive level

Same idea as doublegate toll station

(b) Positive-edge response

(c) Negative-edge response

What is a FF?

Simply, it is a clocked latch

(a) Positive-edge

(a) Negative-edge

HDL (Behavioral)

module D_FF (Q,D,CLK);
output Q; input D,CLK; reg Q; always @ (posedge CLK) Q = D; endmodule

Characteristics Table

\mathbf{D}	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	
0	0	Reset
1	1	Set

How to construct it?

- Master-Slave

■ Edge Triggering

A type of pulse transition detector

YORK U
 D Flip-Flop with Asynch RST

HDL (Behavioral)

```
module DFF (Q,D,CLK,RST);
    output Q;
    input D,CLK,RST;
    reg Q;
    always @ (posedge CLK or negedge RST)
    if (~RST) Q = 1'b0;
    else Q = D;
endmodule
```

How would the D-FF with
Synch RST look like?

JK Flip-Flop

(a) Circuit diagram
(b) Graphic symbol

\mathbf{J}	\mathbf{K}	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	
0	0	$Q(\mathrm{t})$	No Change
0	1	0	Reset
1	0	1	Set
1	1	$Q^{\prime}(\mathrm{t})$	Complement

T Flip-Flop

(a) From $J K$ flip-flop

(b) From D flip-flop

(c) Graphic symbol

Characteristics
Table

\mathbf{T}	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	
0	$\mathrm{Q}(\mathrm{t})$	No Change
1	$\mathrm{Q}^{\prime}(\mathrm{t})$	Complement

HDL for JK \& T Flip-Flops

```
//T flip-flop from D flip-flop and gates
module TFF (Q,T,CLK,RST);
    output Q;
    input T,CLK,RST;
    wire DT;
    assign DT = Q^ T ;
//Instantiate the D flip-flop
    DFF TF1 (Q,DT,CLK,RST);
endmodule
/*****************************************/
//JK flip-flop from D flip-flop and gates
module JKFF (Q,J,K,CLK,RST);
    output Q;
    input J,K,CLK,RST;
    wire JK;
    assign JK = (J & ~Q) | (~K & Q);
//Instantiate D flipflop
    DFF JK1 (Q,JK,CLK,RST);
endmodule
```


FF's with asynchronous RST

```
//D flip-flop
module DFF (Q,D,CLK,RST);
    output Q;
    input D,CLK,RST;
    reg Q;
    always @ (posedge CLK or negedge RST)
            if (~RST) Q = 1'b0;
    else Q = D;
endmodule
```

HDL for JK FF (Functional)

```
module JK_FF (J,K,CLK,Q,Qnot);
    output Q,Qnot;
    input J,K,CLK;
    reg Q;
    assign Qnot = ~ Q ;
    always @ (posedge CLK)
    case ({J,K})
        2'b00: Q = Q;
        2'b01: Q = 1'b0;
        2'b10: Q = 1'b1;
        2'b11: Q = ~ Q;
        endcase
endmodule
```

JK FF without asynchronous RST

Important Book Chapters

- Related sections of chapter 5 in the textbook

References

- "Digital Design (3 ${ }^{\text {rd }}$ and $4^{\text {th }}$ Editions)", Morris Mano , Prentice Hall, (2002/2007)
- "Digital Fundamentals ($10^{\text {th }}$ Edition)", Thomas L. Floyd, Prentice Hall, 2010
- http://ece.gmu.edu/coursewebpages/ECE/ECE448/S10/
- cpk.auc.dk/education/SSU-2007/mm10/ssu_mm10.pdf
- www.ece.cmu.edu/~thomas/VSLIDES.pdf
- http://ece.gmu.edu/courses/ECE448/index_S06.htm
- MIT Lecture Notes on:
http://www.ece.concordia.ca/~asim

