## 1. Assuming a telegraph operator can achieve a maximum of 40 words-per-min

$$
\begin{aligned}
& 40 \text { wpm } \\
& 6 \text { cpw }+1 \text { space } \\
& 7 \times 40=280 \text { chars per min. } \\
& \frac{280}{60} \text { chars per see. }
\end{aligned}
$$

- 26 latten +10 digits $\Rightarrow 36$ symbols
- a basic code can do this in bits

$$
\therefore \frac{280}{60} \times 6 \quad 6 p 5=286 p s=R
$$

2. Network design is often partitioned into a multi-layer hierarchy with each layer data link layer
3. How many cables does a wired telephone network consisting of 100 users need if it $100 * 99 / 2=4950$

## 4. You need to operate at error-free rates of $24-\mathrm{kbps}$ through a channel with a 1.6

$$
\begin{aligned}
24 \times 10^{3} & =1.6 \times 10^{3} \cdot \log _{2}(1+S N R) \\
15 & =\log _{2}(1+S N R) \\
32,768 & =1+5 N R \\
\text { SNR } & =32767 \\
\text { SNR }\left.\right|_{d 3} & =10 \cdot \log (32767)=45.1 \mathrm{~dB}
\end{aligned}
$$

## 5. What kind of switching do wire-line telephone and telegraph provide?

 telephone: circuit switching, connection-oriented telegraph: message switching, connectionless6. What general kind of switching does the Internet provide? And packet switching, "flavours" include datagram networks and virtual circuit networks
7. Is classic Ethernet better classified as a broadcast or switching network?
broadcast
8. Name two types of round robin networks.

## Sketch a round-robin network

polling, token passing
passive ring might have a problem

9. I want to send 2 -level (just 1 and 0 ) digital information in the form of square pulses

$\therefore$ cansend pulse with freq. content

$$
\begin{aligned}
& \frac{1}{a}=12 \mathrm{MHz} \\
& a=\frac{1}{12 \times 10^{6}}=0.083 \mu \mathrm{~s} \Rightarrow \\
& \therefore \frac{1}{0.083 \mu s}=12 \mathrm{Mbps}^{2} \\
& \uparrow \uparrow \\
& \text { can send a } \\
& \text { dor } 0 \text { every } \\
& 0.083 \mathrm{us} \therefore \text { date } \\
& \text { rate is... }
\end{aligned}
$$

10. You are using a $\mathbf{R}=\mathbf{2} .3-\mathrm{Mbps}$ link and notice a $\mathbf{1 5 - \mathrm { MB }}$ file downloaded in 1.3 seconds

Throughput $=15 * 8 * 1 \mathrm{e} 6 / 1.3=92.3 \mathrm{Mbps}$
Correct answer...but how can throughput be greater than R ?!?!?!??!?!?! It can't so the numbers in this question weren't well thought out, but the throughput calculation is ok.
11. Packets with an average length of 1 KBytes arrive at a link to be transmitted.

12. For a link with a data rate of 10 Gbps communicating over a distance of 5000km (Problem 1.15 from the textbook)

- say your transmitter is launching bits into your medium at a rate of $R$ bits ts (bps)
- if your message consists of L message bits it tales
your transmitter

Le ser $\frac{L_{\text {message }}}{R}$ seconds to load the entire

- that's just getting the message INTO the pipe don't forget it takes time for all these bits to propagate to the other side, that's the propagation delay tpmop
- thess the total time it takes to get your whole message to the destination is

$$
\frac{L_{\text {message }}}{R}+t_{\text {prop }}
$$

- similarly to send an acknowledgment message consisting \& Lack bit requires

$$
\frac{L_{\text {act }}}{R}+t_{\text {prop }}
$$

thus the total time to send a message \& get a complete acknowledgment of that message is

$$
t_{\text {total }}=\frac{L_{\text {message }}}{R}+\frac{L_{\text {cock }}}{R}+2 \cdot t_{\text {pop }}
$$

recall that tan is just distance for the signal to travel over the speed of light in the communication mediven on we can re-write the above os

$$
t_{\text {total }}=\frac{L_{\text {message }}}{R}+\frac{L_{\text {ark }}}{R}+2 \cdot \frac{d}{c}
$$

at $10-6 b_{p s} \frac{L_{\text {message }}}{R}=0.8008 \mathrm{~s}$ (1000-byte message)

$$
\frac{\text { Lack }}{R}=0.0016 \mathrm{~s} \text { (1- byte ACK) }
$$

for the $10-\mathrm{cm} \frac{2 d}{c}=0.00087 \mathrm{~s}$ circuit board
$\begin{aligned} & \text { for the } 5 \text {-km } \\ & \text { continent }\end{aligned} \quad \frac{2 l}{c}=43478.26 \mathrm{~s}$

$$
\begin{aligned}
& t_{\text {total }} / l_{10 \mathrm{~cm}}=0.80167 \\
& t_{\text {total }} / 5 \mathrm{~km}=43479.06
\end{aligned}
$$

mote the huge propagation time in a continental connection, waring for a 1 -byte ACK in such a link can be extremely wasteful of resources
13. If switching time is $10 \mu \mathrm{~s}$ (microseconds) in a store-and-forward packet-switching

If $v=2 \mathrm{e} 5 \mathrm{~km} / \mathrm{s}$ or $200 \mathrm{~m} / \mathrm{us}$ (us is "microsecond") in 10 us the signal travels 2 km . Therefore each switch adds the equivalent of 2 km of extra cable. Even going through 10 routers we only add the equivalent of 20 km to what is otherwise a $4,500 \mathrm{~km}$ distance. Thus, the router addition is not likely to have a big impact.

