L1: Introduction to Communication Networks (Telegraph \& Telephone)

Sebastian Magierowski
York University

Outline

- Course texts, mark breakdown, topics
- Telegraph
- A connectionless message-switching network
- Telephone
- A connection-oriented circuit-switching network

Textbook \& Topics

- Textbook: Communication Networks
- Ch. 1 - 8

1. Network Introduction (1.1-1.2)
2. Models, Layers and Applications (2.1-2.5)
3. Digital Information \& Transmission (3.1-3.9)
4. Data Link Protocols (5.1-5.5)
5. Multiple Access \& LANs (6.1,6.2,6.6,6.7)

6. Packet Switching (7.1-7.5)
7. TCP/IP Architecture (8.1-8.6)

Overview

- Basic Internet operations and applications
- structure, addressing, routing, DNS, HTTP, etc.
- Basic network principles
- sharing, metrics, scalability
- Physical layer (communications THEORY!!!!)
- signals, modulation, error detection, error correction, wires
- Data Link layer
- Flow control, framing
- Medium Access Control
- Dynamic medium control, ALOHA, Ethernet
- Network Layer
- routing \& IP
- Transport Layer
- TCP

Telegraph

- 1850's text message service
- Tap on machine that sends voltage pulses

- A basic circuit...

Digital Communications (1850s style)

- Conceptually convert text into sequence of dots and dashes

	Morse Code		Morse Code		Morse Code		Morse Code
A	- -	J	- - -	S	\cdots	2	- - -
B	- $\cdot \cdots$	K	-	T	-	3	\cdots - -
C	- - -	L	\cdot - \cdot	U	\cdots -	4	$\cdots \cdots$ -
D	- •	M	- -	V	.	5	\ldots.
E		N	-	W	\cdot - -	6	.
F	-	0	- - -	X	- \cdot -	7	-- \cdot.
G	--.	P	---.	Y	- $\cdot-$	8	---.
H	. . .	Q	-- -	Z	- - .	9	- - -
1	.	R	\cdot -	1	\cdot - - -	0	- - - -

Physical Signal Characteristics

- Ideal signal as a function of time
- What does it actually look like?
- Intersymbol interfrence (ISI)

A Little Telegraph Quantification

- What was the data rate of this technology? (In bps)
- Operators could send 30 words-per-minute (wpm)
- Think of the dots/dashes as $1 \mathrm{~s} / 0 \mathrm{~s}$...
- Or approximate the bits per character for constant length code

Multiplexing

- Baudot multiplexer let 5 operators use a line at the same

 time- Boosted the rate to?

Message Switching

- "Vast" network of stations arose
- Operator examines source \& destination address and routes the message to next most reasonable switch
- store-and-forward : examine message in full before sending to next node (as opposed to cut-through)
- Transmission by occasional connections referred to as message-switching

The Telephone

- ~ 30 years after telegraph (1876 Bell's patent)
- Direct conversion of sound pressure to an electrical analog

- No need for digital translation, a direct end-user service - Plug and play
- Rough data rate? Shannon's Theorem

The Telephone "Network"

- Originally sold in pair

- What's the problem with this?

- N users requires ???? connections
- 1000 users $\Rightarrow 499,500$ connections

The Telephone Network

- The birth of the switching office (and Bell Telephone Company, 1877)...a wiring hub

- Run a wire between the customer and the telephone company switching office
- Now only need N connections to central office (CO) (aka end office or local central office)

Switching Station

- New York has 80 for 8,000,000
- About 100,000 lines served by a station

[Kercher, ©Penguin]

Digitization of the Telephone Network

- Pulse Code Modulation
- 64 kbps uncompressed voice signal (8-bit sample every $125 \mu \mathrm{~s}$)
- Time Division Multiplexing (TDM)
- Put multiple signals on the trunk
- T1 carrier method sends a signal from one of 24 messages every 125 us
$-\left(24^{*} 8+1\right) / 125$ us $=1.544 \mathrm{Mbps}$
- Digital Switching (no analog conversion)
- No need to go back to analog at switch
- Optical Transmission
- 10^{12} bps!!!

