EECS 3213 Fall 2014

L12: Modulation

Sebastian Magierowski
 York University

Outline

- Review
- Passband Modulation
- ASK, FSK, PSK
- Constellations

Underlying Idea

- Attempting to send a sequence of digits through a continuous channel

- Not easy...
- ...modulerize the design

Continuous-Time Communication

- Map symbols into analog waveforms that match characteristics of channel
- spectral shape
- location (carrier)

Simple Baseband Modulator (Pulse Shaper)

- Basic implementation

- Time and spectral characteristics (Nyquist $\boldsymbol{s}_{\mathbf{x}}(\boldsymbol{f})$

Spectral Efficiency

- What is the bit-rate relative to the spectrum used:

$$
\begin{aligned}
& v=\frac{\text { bit-rate }}{\text { bandwidth }} \\
& v=\frac{2 f_{s} \cdot \log _{2}(M)}{f_{s}}\left[\frac{\text { bits }}{s \cdot \mathrm{~Hz}}\right]
\end{aligned}
$$

- Simple 2-level baseband modulation 2 bits $/ \mathrm{s} \cdot \mathrm{Hz}$
- or 2 symbols/s•Hz

Passband Modulation

- What if the channel is not baseband?

- Replace DC 1/0 representation...

- ...with AC representation...

- Have 3 ways to modulate a sinusoid: $A_{c} \cos \left(\omega_{c} t+\phi\right)$

Amplitude Modulation

- $A_{c} \cos \left(\omega_{\mathrm{c}} \mathrm{t}+\phi\right)$
- Map bits into amplitude of sinusoid: "1" send sinusoid; "0" no sinusoid
- Demodulator looks for signal vs. no signal

Frequency Modulation

- $A_{c} \cos \left(\omega_{c} t+\phi\right)$
- Map bits into frequency: " 1 " send frequency $f_{c}+\delta$; " 0 " send frequency $f_{c}-\delta$
- Demodulator looks for power around $f_{c}+\delta$ or $f_{c}-\delta$
$\begin{array}{llllllll}\text { Information } & & 1 & 0 & 1 & 1 & 0 & 1\end{array}$
Frequency
Shift
Keying

(Binary) Phase Modulation

- Map bits into phase of sinusoid:
- " 1 " send $A \cos (2 \pi f t)$
, i.e. phase is 0
- " 0 " send $A \cos (2 \pi f t+\pi)$
, i.e. phase is π
- Equivalent to multiplying $\cos (2 \pi f t)$ by +A or -A
-" 1 " send $A \cos (2 \pi f t)$
i.e. multiply by 1
- "0" send $A \cos (2 \pi f t+\pi)=-A \cos (2 \pi f t)$
, i.e. multiply by -1
- We will focus on phase modulation

AM Modulator

- Simplest and most dominant case, multiply symbol by a carrier
- Modulate $\cos \left(2 \pi f_{c} t\right)$ by multiplying by A_{k} for T seconds:

$\cos \left(2 \pi f_{c} t\right) \quad \begin{aligned} & \text { Transmitted signal } \\ & \text { during } k \text { th interval }\end{aligned}$

AM Demodulator

- Demodulate (recover A_{k}) by multiplying by $2 \cos \left(2 \pi f_{c} t\right)$ for T seconds and lowpass filtering (smoothing):

Signaling Rate and Transmission Bandwidth

- Fact from modulation theory:

If
Baseband signal $x(t)$ with bandwidth $f_{s} / 2 \mathrm{~Hz}$ then
Modulated signal $x(t) \cos \left(2 \pi f_{c} t\right)$ has bandwidth $f_{s} \mathrm{~Hz}$

- If bandpass channel has bandwidth $f_{s} \mathrm{~Hz}$,
- It's baseband version has bandwidth of $f_{s} / 2 \mathrm{~Hz}$, so...
- ...modulation system supports $f_{s} / 2 \times 2=f_{s}$ symbols/second
- That is, f_{s} symbols/second per $f_{s} \mathrm{~Hz}=1$ symbols/s•Hz
- Recall baseband transmission system supports 2 symbols/s•Hz !!!

Quadrature Amplitude Modulation (QAM)

- QAM uses two-dimensional signaling
- A_{k} modulates in-phase $\cos \left(2 \pi f_{c} t\right)$
- B_{k} modulates quadrature phase $\cos \left(2 \pi f_{c} t+\pi / 4\right)=\sin \left(2 \pi f_{c} t\right)$
- Transmit sum of in-phase \& quadrature phase components

- $Y_{i}(t)$ and $Y_{q}(t)$ both occupy the bandpass channel
- QAM sends 2 symbols/s•Hz

QAM Demodulation

Signal Constellations

- Convenient to write modulated signals in "quadrature" form...

$$
y(t)=y_{i}(t) \cos \left(2 \pi f_{c} t\right)+y_{q}(t) \sin \left(2 \pi f_{c} t\right)
$$

- "in-phase" and "quadrature" components
- And to plot it as a signal constellation in the complex place...
- Plot samples of in-phase terms along real axis
- Plot samples of quadrature terms along imaginary axis

BPSK Constellation

- For example...

$$
y_{B P S K}(t)=a_{n} \cos \left(\omega_{c} t\right), a_{n}= \pm 1
$$

only the in-phase term is present

two possible amplitudes

Larger QAM Constellations

- With 4-QAM
- bits represented per symbol: $N=2$
- Constellation points: $M=2^{N}=4$
- Many other possibilities (rectangular constellation)
- $N=3,4,5, \ldots$
- Even N preferred (easier coder)

$M=4$
$L=2$

$M=16$
$L=4$

$M=32$
$L=6$

- Increasing N requires more power

Phase-Shift Keying (PSK)

- A common variant
- Conceptually, vary phase of signal based on symbol (already saw this)

- Constant amplitude

$\pi / 4-$ QPSK Modulator

- Just 2 QAM modulators
- phase shifted relative to each other
- top modulator has both cos/sin always active
- bottom modulator has either cos/sin active

