EECS 3213 Fall 2014

L13: Error Detection and Correction

Sebastian Magierowski York University

1

2

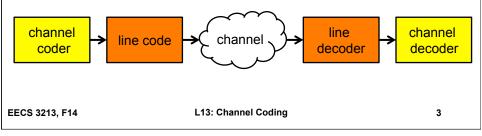
EECS 3213, F14 L13: Channel Coding

Outline

- · Basic (channel) coding ideas
- Error detection (Backward error correction)
 - single parity
 - interleaved parity (2-D parity)
 - internet checksum
 - polynomial codes
- · Effectiveness and Error Models
- (Forward) Error correction
 - cyclic codes, block codes, convolutional codes, iterative codes

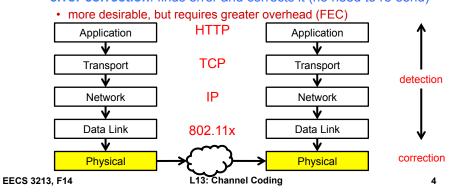
Types of Coding

- Some options
 - Line Coding
 - · spectrum control
 - timing
 - · basic error detection
 - Channel Coding
 - error detection
 - · error correction
 - error prevention (combined detection & decoding)



Channel Coding

- · Add in redundancy
- Two basic ideas, used in combination
 - error detection: recognizes an error in a frame (request re-send)
 - ARQ
 - error correction: finds error and corrects it (no need to re-send)



Basic Ideas and Nomenclature

x = codeword
o = noncodewords

- Data consists of k bits
 - 2^k possible messages
- Add m redundant bits to this
- Codeword of n = m + k bits
 - $-2^{m+k} = 2^n > 2^k$ possible strings
 - But only 2^k are valid!
 - (n,k) codes e.g.: (2,1)
- Thus coded messages (*codewords*) are separated in signal space
 - Hamming distance, d: # of bit positions that differ
- Code rate: r = k/n
 - $-\frac{1}{2},\frac{3}{4}$

EECS 3213, F14

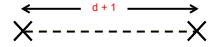
L13: Channel Coding

5

о х

Detection and Correction Basic Example

• To detect d errors: need Hamming distance of d+1

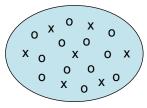


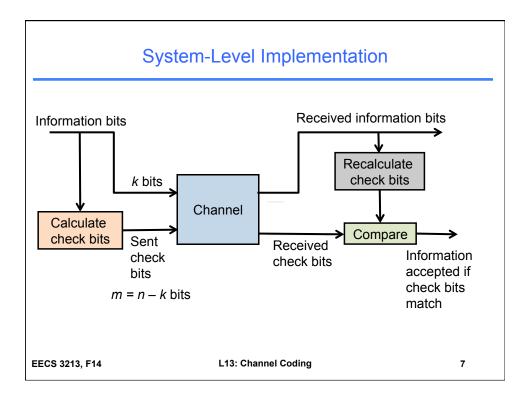
To correct d errors: need Hamming distance of 2d+1

- e.g.
 - 000000000
 - 0000011111
 - 1111100000
 - 1111111111
- d_{min} = 5
- detect up to 4 errors
- · correct up to 2 errors
- · only one at a time

EECS 3213, F14

L13: Channel Coding





Simple Detection: Single Parity Code

- Information (7 bits): (0, 1, 0, 1, 1, 0, 0)
- Parity Bit: b₈ = 0 + 1 +0 + 1 +1 + 0 = 1
- Codeword (8 bits): (0, 1, 0, 1, 1, 0, 0, 1)
- If single error in bit 3: (0, 1, 1, 1, 1, 0, 0, 1)
 - # of 1's =5, odd
 - Error detected
- If errors in bits 3 and 5: (0, 1, 1, 1, 0, 0, 0, 1)
 - # of 1's =4, even
 - Error not detected

Single Parity Check: Formally

- Append an overall parity check to k information bits
 - Info Bits: $b_1, b_2, b_3, ..., b_k$
 - Check Bit: $b_{k+1} = b_1 + b_2 + b_3 + ... + b_k$ modulo 2
 - Codeword: $(b_1, b_2, b_3, ..., b_k, b_{k+1})$
- All codewords have even # of 1s
- Redundancy: Single parity check code adds 1 redundant bit per k information bits: overhead = 1/(k + 1)
- Coverage

EECS 3213, F14

- All error patterns that change an odd # of bits are detectable
- All even-numbered patterns are undetectable
- Parity bit used in ASCII code

L13: Channel Coding

Effectiveness: Random Error Vector Model

- Effectiveness: Probability system fails to detect error
- Dependent on error model
 - Random Error Vector
 - Random Bit Error
 - Burst
- Random Error Vector
 - n-bit vector, e, represents error pattern
 - $-e_i = 0$ -> no error in position i
 - $-e_i = 1 \rightarrow an error in position i$
- 2ⁿ possible combinations
 - Assumes all possibilities equally likely
 - 50% chance of even number of errors
 - Therefore...????

EECS 3213, F14 L13: Channel Coding

What If Bit Errors are Random?

- Many transmission channels introduce bit errors at random, independent of each other, with probability p
- Some error patterns are more probable than others:
 - For example, if p = 0.1

$$P[10000000] = p(1-p)^7 = 0.0478$$

 $P[11000000] = p^2(1-p)^6 = 0.0053$

- In any worthwhile channel p < 0.5, and so p/(1-p) < 1
- It follows (can you show this?) that patterns with 1 error are more likely than patterns with 2 errors and so forth
- What is the probability that an undetectable error pattern occurs?

EECS 3213, F14

L13: Channel Coding

11

Effectiveness: Random Bit Error Model

Undetectable error pattern if even # of bit errors:

P[error detection failure] = P[undetectable error pattern] = P[error patterns with even number of 1s]

$$= {n \choose 2} p^2 (1-p)^{n-2} + {n \choose 4} p^4 (1-p)^{n-4} + \dots$$

• Example: Evaluate above for n = 32, p=10⁻³

P[undetectable error] =
$$\binom{32}{2}$$
 (10⁻³)² (1 - 10⁻³)³⁰ + $\binom{32}{4}$ (10⁻³)⁴ (1 - 10⁻³)²⁸ $\approx 496 (10^{-6}) + 35960 (10^{-12}) \approx 4.96 (10^{-4})$

 For this example, roughly 1 in 2000 error patterns is undetectable

EECS 3213, F14

L13: Channel Coding

Two-Dimensional Parity Check (Interleaving)

- More parity bits to improve coverage
- · Arrange information as rows
- · Add single parity bit to each row
- Add a final "parity" row
- · Used in early error control systems

Bottom row consists of check bit for each column

EECS 3213, F14

L13: Channel Coding

13

Error-Detecting Capability 1 0 0 1 0 0 100100 000001 000001 $| 1 \ 0 \ 0 \ 1 \ 0 |_0$ One error 100110 1 1 0 1 1 0 1, 2, or 3 errors 100111 1 0 0 1 1 1 can always be detected Not all patterns 100100 1 0 0 1 0 0 >4 errors can 0 0 0 1 0 1 000101 be detected 100100 100100 Three errors Four errors 100010 100110 (undetectable) 100111 100111 Arrows indicate failed check bits EECS 3213, F14 L13: Channel Coding 14

Other Error Detection Codes

- Many applications require very low error rate
- Need codes that detect the vast majority of errors
- Single parity check codes do not detect enough errors
- Two-dimensional codes require too many check bits
- The following error detecting codes used in practice:
 - Internet Check Sums
 - CRC Polynomial Codes

EECS 3213, F14 L13: Channel Coding

Internet Checksum

15

- Several Internet protocols (e.g. IP, TCP, UDP) use check bits in IP header to detect errors (or in the header and data for TCP/UDP)
- A checksum is calculated for header contents and included in a special field.
- Checksum recalculated at every router, so algorithm selected for ease of implementation in software
- Let header consist of L, 16-bit words, \mathbf{b}_0 , \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_{L-1}
- The algorithm appends a 16-bit checksum b_L

Checksum Calculation

The checksum \mathbf{b}_{L} is calculated as follows:

Treating each 16-bit word as an integer, find

$$\mathbf{x} = (\mathbf{b}_0 + \mathbf{b}_1 + \mathbf{b}_2 + ... + \mathbf{b}_{L-1}) \text{modulo}(2^{16}-1)$$

• The checksum is then given by:

$$\mathbf{b}_{L} = -\mathbf{x} \mod (2^{16}-1)$$

Thus, the headers must satisfy the following pattern:

$$\mathbf{0} = (\mathbf{b}_0 + \mathbf{b}_1 + \mathbf{b}_2 + ... + \mathbf{b}_{L-1} + \mathbf{b}_L) \text{modulo}(2^{16}-1)$$

• The checksum calculation is carried out in software using one's complement arithmetic

EECS 3213, F14

L13: Channel Coding

Internet Checksum Example			
4	0100	 In the receiver 	
5	0101	4	0100
9	1001	5	0101
18	10010	9	1001
		-3	1100
18 mod(2 ⁴ -1)	0010	15	11110
= 3	+ 1		
	0011	15 mod(2 ⁴ -1)	1110
 Make checksum: -3 		= 0	+ 1
• 1100			1111
EECS 3213, F14	L13: Channel Coding		18

Polynomial Codes

- Polynomials instead of vectors for codewords
- Polynomial arithmetic instead of checksums
- · Implemented using shift-register circuits
- Also called cyclic redundancy check (CRC) codes
- Most data communications standards use polynomial codes for error detection
- Polynomial codes also basis for powerful error-correction methods

EECS 3213, F14

L13: Channel Coding

19

General Idea

- Choose a special code: G
 (generator code, n=m+k bits)
- Shift information by m bits,
 ÷G, and find remainder, R

$$\frac{2^m I}{G} = Q \oplus \frac{R}{G}$$

• Make n=m+k bit codeword

$$B = 2^m I \oplus R$$

m-bit redundancy

At receiver if no error:

$$\frac{B}{G} = \frac{2^m I \oplus R}{G}$$
$$= Q \oplus \frac{R}{G} \oplus \frac{R}{G} = Q$$

At receiver if have error:

$$\frac{B \oplus E}{G} = \frac{2^m I \oplus R \oplus E}{G}$$
$$= C \oplus \frac{S}{G} \neq Q$$

EECS 3213, F14

L13: Channel Coding

Cyclic Error Correction

- · We can do more than just detect...
- If have error:

$$\frac{B \oplus E}{G} = \frac{2^m I \oplus R \oplus E}{G} = C \oplus G$$

But note:

$$\frac{B \oplus E}{G} = Q \oplus \frac{E}{G} = C \oplus \frac{S}{G}$$

Rearranging:

$$\frac{E}{G} = [Q \oplus C] \oplus \frac{S}{G}$$

remainder (syndrome)

depends only on the error (not on codeword B)

- Syndrome can be used to identify error
- As simple as LUT

EECS 3213, F14

L13: Channel Coding

21

Cyclic Code Types

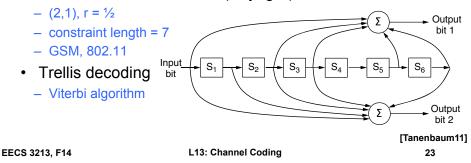
- Cyclic codes are a type of block code
 - redundant bits are generated by some block of data (contrast with convolutional code)
- BCH codes are a specific example
 - -(n,k,d)
 - (7,4,3): code rate = 4/7 = 0.571 (2 detect, 1 correct)
 - (15,5,7): code rate = 5/15 = 0.333 (6 detect, 3 correct)
- Reed-Solomon
 - operate on k-bit symbols (rather than individual bits)
 - and 2^k-1 symbols at a time (e.g. 8-bit symbol & 255 symbols total)
 - typical: (255,233,33), therefore can correct (33-1)/2 = 16 symbols
 - 8 x 16 = 128 bits in a 8 x 255 = 2040 bit sequence
 - very good for burst errors (DSL, cable, satellite, CDs)

EECS 3213, F14

L13: Channel Coding

Convolutional Codes

- Codes continuously
 - good for streaming, don't have to pause to collect blocks of bits
- Data is shifted through registers
 - output depends on present and past inputs (state-machine)
 - this redundancy achieves the necessary coding
- NASA convolutional code (Voyager)



Recent Iterative Codes

- Turbo codes, 1993
 - two codes generated and interleaved
 - two decoders work iteratively to decode message
 - close to Shannon limit
- Low Density Parity Check, 1962 & 2003
 - block code
 - each output bit formed from only a fraction of input bits
 - iteratively re-assembled
 - rapidly being incorporated (no IP issues)
 - digital video, 10 Gbps ethernet, power line, latest 802.11