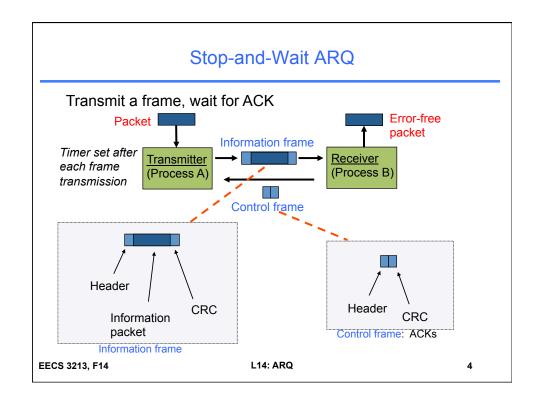
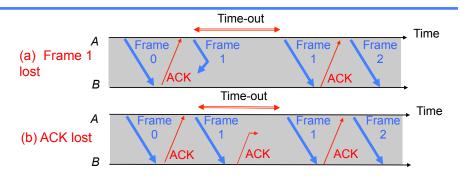
EECS 3213 Fall 2014

L14: ARQ & Reliable Data Transfer

Sebastian Magierowski York University


EECS 3213, F14 L14: ARQ 1

Outline

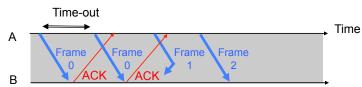

- A look at 3 ways of data link error control
- Progressively more efficient (and complex) means of transmission & re-transmission
- Can also be employed (and definitely is) by the higher layers (e.g. transport)

Automatic Repeat Request (ARQ)

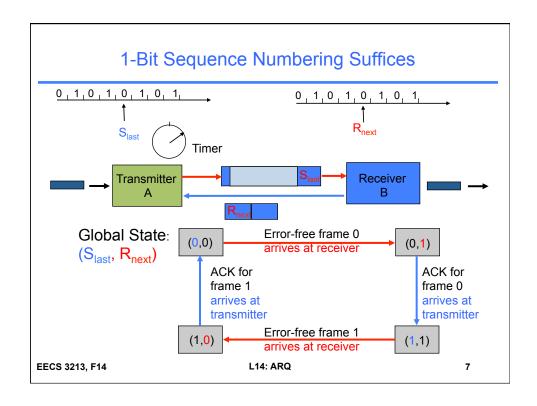
- Purpose: to ensure a sequence of information packets is delivered in order and without errors or duplications despite transmission errors & losses
- · We will look at:
 - 1. Stop-and-Wait ARQ
 - 2. Go-Back N ARQ
 - 3. Selective Repeat ARQ
- · Basic elements of ARQ:
 - Error-detecting code with high error coverage
 - ACKs (positive acknowledgments)
 - NAKs (negative acknowledgments)
 - Timeout mechanism

Need for Sequence Numbers

- In cases (a) & (b) the transmitting station A acts the same way
- But in case (b) the receiving station B accepts frame 1 twice
- Question: How is the receiver to know the second frame is also frame 1?


5

- Answer: Add frame sequence number in header
- S_{last} :sequence number of most recent transmitted frame


EECS 3213, F14 L14: ARQ

ACK Sequence Numbers

(c) Premature Time-out

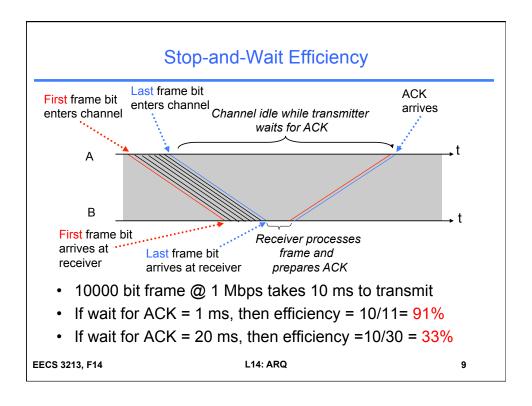
- · The transmitting station A misinterprets duplicate ACKs
- · Incorrectly assumes second ACK acknowledges Frame 1
- Question: How is the receiver to know second ACK is for frame 0?
- Answer: Add frame sequence number in ACK header
- R_{next} is sequence number of next frame expected by the receiver
- · Implicitly acknowledges receipt of all prior frames

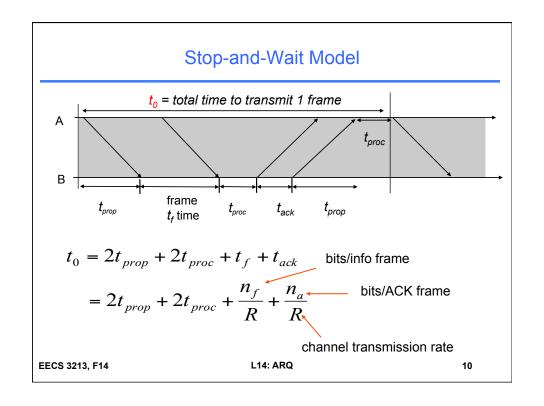
Stop-and-Wait ARQ Protocol Review

Transmitter

Ready state

- Await request from higher layer for packet transfer
- When request arrives, transmit frame with updated S_{last} and CRC
- Go to Wait State

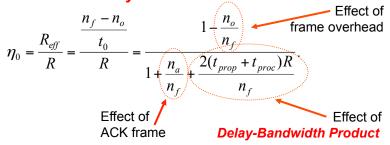

Wait state


- Wait for ACK or timer to expire; block requests from higher layer
- If timeout expires
 - retransmit frame and reset timer
- If ACK received:
 - If sequence number is incorrect or if errors detected: ignore ACK
 - If sequence number is correct (R_{next} = S_{last} + 1): <u>accept frame</u>, S_{last} = R_{next} go to Ready state

Receiver

Always in Ready State

- · Wait for arrival of new frame
- When frame arrives, check for errors
- If no errors detected and sequence number is correct ($S_{last} = R_{next}$), then
 - accept frame,
- update R_{next},
- send ACK frame with R_{next},
- deliver packet to higher layer
- If no errors detected and wrong sequence number
- discard frame
- send ACK frame with R_{next}
- · If errors detected
 - discard frame


S&W Efficiency on Error-Free Channel

Effective transmission rate:

bits for header & CRC

 $R_{eff} = \frac{\text{number of information bits delivered to destination}}{\text{total time required to deliver the information bits}} = \frac{n_f - n_o}{t_o}$

Transmission efficiency:

EECS 3213, F14 L14: ARQ 11

Example: Impact of Delay-Bandwidth Product

- $n_f = 1250 \text{ bytes} = 10000 \text{ bits (frame size)}$
- $n_a = n_o = 25$ bytes = 200 bits (overhead & ACK size)

2xDelayxBW	1 ms	10 ms	100 ms	1 sec
Efficiency	200 km	2000 km	20000 km	200000 km
1 Mbps	10 ³	10 ⁴	10 ⁵	10 ⁶
(10 ms)	88%	49%	9%	1%
1 Gbps	10 ⁶	10 ⁷	108	10 ⁹
(0.1 ms)	1%	0.1%	0.01%	0.001%

Stop-and-Wait does not work well for very high speeds or long propagation delays

S&W Efficiency in Channel with Errors

- Let $1 P_f = \text{probability frame arrives w/o errors}$
- Avg. # of transmissions to first correct arrival is then 1/ (1– P_f)
- "If 1-in-10 get through without error, then avg. 10 tries to success"
- Avg. Total Time per frame is then $t_0/(1 P_f)$

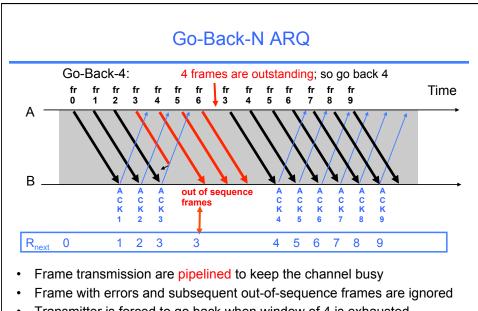
$$\eta_{\mathit{SW}} = \frac{R_{\mathit{eff}}}{R} = \frac{\frac{n_f - n_o}{t_o / n_f}}{R} = \frac{1 - \frac{n_o}{n_f}}{1 + \frac{n_a}{n_f} + \frac{2(t_{\mathit{prop}} + t_{\mathit{proc}})R}{n_f}} (1 - P_f)}$$

EECS 3213, F14 L14: ARQ 13

Example: Impact Bit Error Rate

- n_f = 1250 bytes = 10000 bits
- $n_a = n_o = 25$ bytes = 200 bits

Find efficiency for random bit errors with p=0, 10⁻⁶, 10⁻⁵, 10⁻⁴ $1 - P_f = (1 - p)^{n_f} \approx e^{-n_f p} \text{ for large } n_f \text{ and small } p$

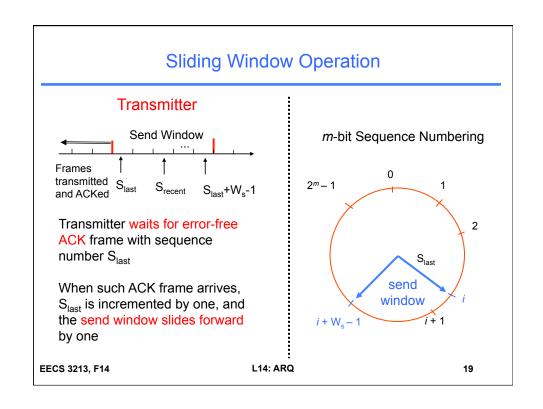

$1 - P_f$ Efficiency	0	10 ⁻⁶	10 ⁻⁵	10-4
1 Mbps	1	0.99	0.905	0.368
& 1 ms	88%	86.6%	79.2%	32.2%

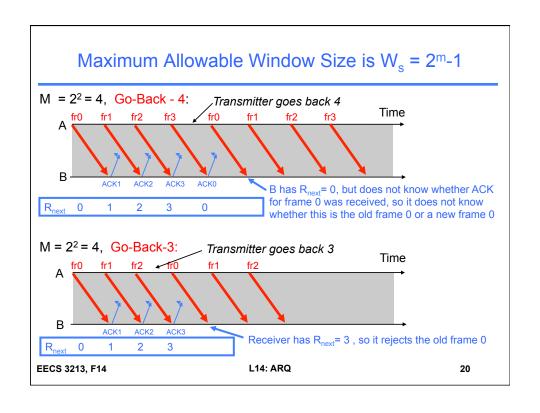
Bit errors impact performance as n_fp approaches 1

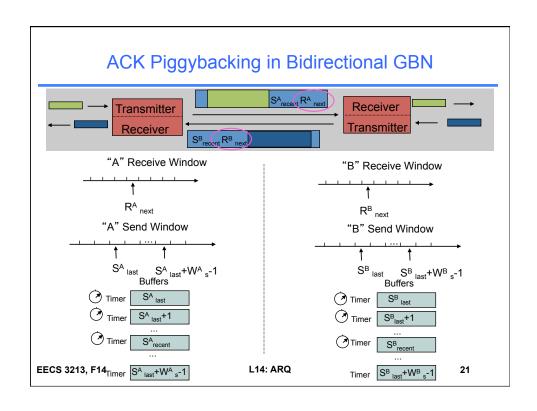
Go-Back-N ARQ

- Improve Stop-and-Wait by not waiting!
- Keep channel busy by continuing to send frames
- Allow a window of up to W_s outstanding frames
- Use *m*-bit sequence numbering
- · If ACK for oldest frame arrives before window is exhausted, we can continue transmitting
- If window is exhausted, pull back and retransmit all outstanding frames
- Alternative: Use timeout

EECS 3213, F14 L14: ARQ 15


Transmitter is forced to go back when window of 4 is exhausted


Go-Back-N with Timeout


- · Problem with Go-Back-N as presented:
 - What if I run out of frames to send before the end of a window?
 - · Effectively A won't exhaust its window
 - But...
 - · If earlier frame in A's window is lost we will not re-transmit it
 - Because our window is effectively not exhausted
 - So a frame is permanently lost!!!
- · Solution: Use a timeout with each frame
 - When timeout expires, resend all outstanding frames

EECS 3213, F14 L14: ARQ 17

Go-Back-N Transmitter & Receiver **Transmitter** Receiver Send Window Receive Window Frames transmitted S_{last} S_{recent} and ACKed Frames **Buffers** R_{next} received oldest un-ACKed frame Receiver will only accept S_{last}+1 a frame that is error-free and that has sequence number R_{next} most recent When such frame arrives R_{next} is transmission incremented by one, so the max Seq # S_{last}+W_s-1 receive window slides forward allowed by one EECS 3213, F14 L14: ARQ 18

Required Window Size for Delay-Bandwidth Product

	Frame = 1250 bytes =10,000 bits, <i>R</i> = 1 Mbps			
	2(t _{prop} + t _{proc})	2 x Delay x BW	Window	
	1 ms	1000 bits	2	
	10 ms	10,000 bits	2	
	100 ms	100,000 bits	11	
	1 second	1,000,000 bits	101	
EECS	3213, F14	L14: ARQ	22	

Efficiency of Go-Back-N

- GBN is completely efficient, if W_s large enough to keep channel busy, and if channel is error-free
- Assume P_f frame loss probability, then time to deliver a frame is:
 - $-t_f$ if first frame transmission succeeds $(1-P_f)$ $-t_f+W_st_f/(1-P_f)$ if first transmission does not succeed (P_f)

$$t_{GBN} = t_f (1 - P_f) + P_f \{t_f + \frac{W_s t_f}{1 - P_f}\} = t_f + P_f \frac{W_s t_f}{1 - P_f}$$
 and

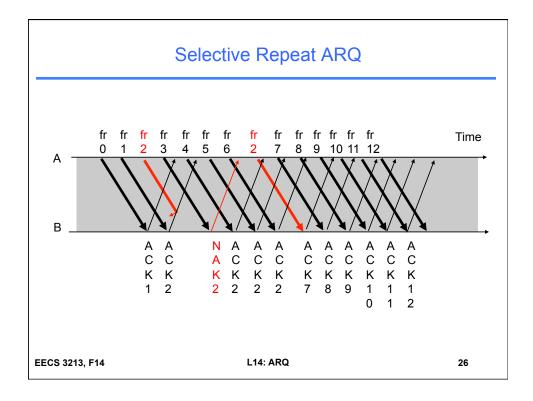
$$\eta_{GBN} = \frac{\frac{n_f - n_o}{t_{GBN}}}{R} = \frac{1 - \frac{n_o}{n_f}}{1 + (W_s - 1)P_f} (1 - P_f)$$

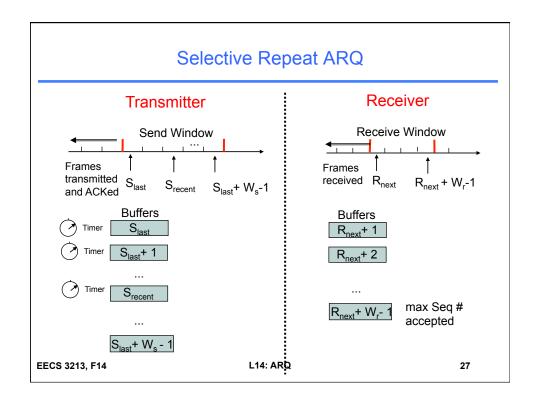
 \setminus Delay-bandwidth product determines $W_{
m s}$

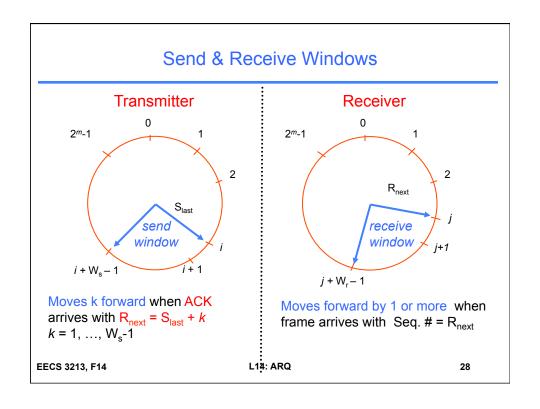
23

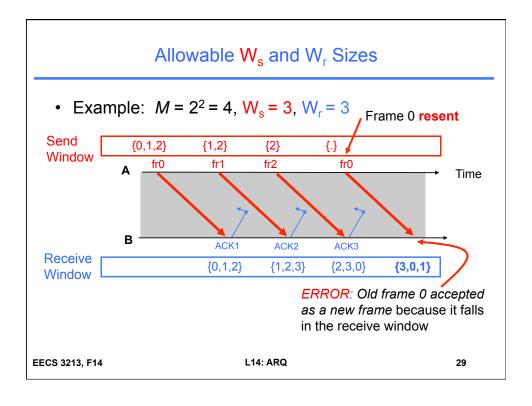
EECS 3213, F14 L14: ARQ

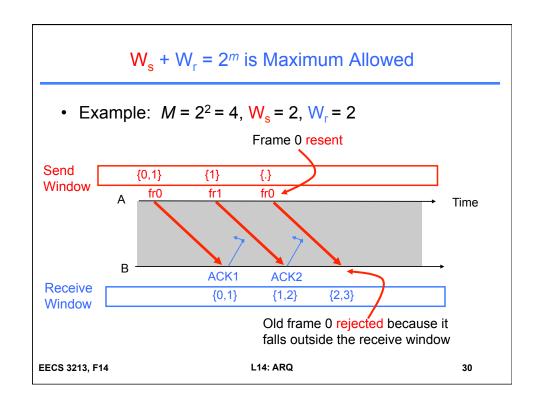
Example: Impact of BER on GBN

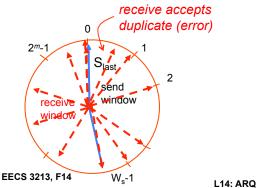

- n_f = 1250 bytes = 10000 bits
- $n_a = n_o = 25$ bytes = 200 bits
- Compare S&W with GBN efficiency for random bit errors with p = 0, 10^{-6} , 10^{-5} , 10^{-4} and R = 1 Mbps & 2^* delay = 100 ms
- 1 Mbps x 100 ms = 100000 bits = 10 frames \rightarrow Use W_s = 11

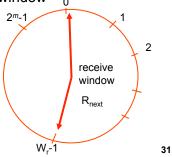

Efficiency	0	10 ⁻⁶	10 ⁻⁵	10-4
S&W	8.9%	8.8%	8.0%	3.3%
GBN	98%	88.2%	45.4%	4.9%


- Go-Back-N significant improvement over Stop-and-Wait for large delaybandwidth product
- Go-Back-N becomes inefficient as error rate increases


Selective Repeat ARQ


- Go-Back-N ARQ inefficient because multiple frames are resent when errors or losses occur
- Selective Repeat retransmits only an individual frame
 - Timeout causes individual corresponding frame to be resent
 - NAK causes retransmission of oldest un-acked frame
- Receiver maintains a receive window of sequence numbers that can be accepted
 - Error-free, but out-of-sequence frames with sequence numbers within the receive window are buffered
 - Arrival of frame with R_{next} causes window to slide forward by 1 or more





Why $W_s + W_r = 2^m$ Works

- Transmitter sends frames 0 to W_s-1; send window empty
- · All arrive at receiver
- All ACKs lost
- Transmitter resends frame 0

- Receiver window starts at {0, ..., W_r}
- Window slides forward to {W_s, ...,W_s+W_r-1}
- Receiver rejects frame 0 because it is outside receive window

Efficiency of Selective Repeat

 Assume P_f frame loss probability, then number of transmissions required to deliver a frame is: t_f/(1-P_f)

$$\eta_{SR} = \frac{\frac{n_f - n_o}{t_f / (1 - P_f)}}{R} = (1 - \frac{n_o}{n_f})(1 - P_f)$$

Example: Impact of BER on Selective Repeat

- n_f = 1250 bytes = 10000 bits
- $n_a = n_o = 25$ bytes = 200 bits
- · Compare S&W, GBN & SR efficiency for random bit errors with $p=0, 10^{-6}, 10^{-5}, 10^{-4}$ and R=1 Mbps & reaction time = 100 ms

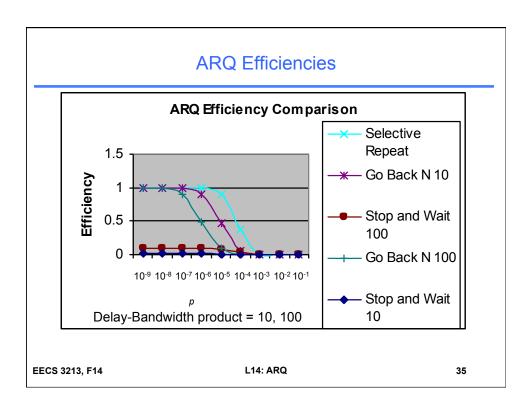
Efficiency	0	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴
S&W	8.9%	8.8%	8.0%	3.3%
GBN	98%	88.2%	45.4%	4.9%
SR	98%	97%	89%	36%

Selective Repeat outperforms GBN and S&W, but efficiency drops as error rate increases

L14: ARQ EECS 3213, F14 33

Comparison of ARQ Efficiencies

• Assume n_a and n_o are negligible relative to n_f , and $L = 2(t_{prop} + t_{proc})R/n_f = (W_s-1)$, then


Selective-Repeat:

$$\eta_{SR} = (1 - P_f)(1 - \frac{n_o}{n_f}) \approx (1 - P_f)$$

$$\begin{split} \eta_{SR} &= (1 - P_f)(1 - \frac{n_o}{n_f}) \approx (1 - P_f) \\ \text{Go-Back-N:} & \text{For $P_f$$\approx 0, SR \& GBN same} \\ \eta_{GBN} &= \frac{1 - P_f}{1 + (W_S - 1)P_f} = \frac{1 - P_f}{1 + LP_f} \end{split}$$

Stop-and-Wait: For $P_f \rightarrow 1$, GBN & SW same

$$\eta_{SW} = \frac{(1 - P_f)}{1 + \frac{n_a}{n_f} + \frac{2(t_{prop} + t_{proc})R}{n_f}} \approx \frac{1 - P_f}{1 + L}$$

