EECS 3213 Fall 2014

L2: Introduction to Communication Networks: Internet

Sebastian Magierowski
York University

Outline

- ARPANET
- A connectionless datagram network
- Internet
- A connectionless/connection-oriented datagram network
- best-effort service
- Local Area Networks
- Ethernet: connectionless protocol, medium access control

Internet

- An internetwork
- Multi-tiered, decentralized organization
- A network of computers
- Powerful processing at network edge
- Move communication complexity towards the edge
- Develop sophisticated protocols

Telephone vs. Internet

ARPANET

- RAND idea implemented in late 60's as network of computers between research centers

Dec. '69

July ' 70

Mar. '71

- Retired in '90 at >100 hosts
- California - Norway

ARPANET: Basic Structure

- Nodes consisted of minicomputers connected to hosts
- Interface Message Processors (IMPs)
- Linked by 56 -kbps lines leased from telephone company

- Protocols developed for communication
- agreement/rules on how communications are to proceed
- IMP-IMP, S/IMP-D/IMP, Host-IMP, Host-Host

Key ARPANET Characteristics

- Datagram service (just like telegraph)

- connectionless (contrast with connection-oriented)
- unreliable (unacknowledged)
- Packet switched
- messages up to 8063 bits could be sent
- BUT...IMPs broke it up into 1008 bit (max) packets
- Automated routing
- no connection setup prior to packet transmission
- distributed routing algorithm to update routing tables
- Error control
- Congestion control
- Flow control

ARPANET Applications

- ARPANET introduced many new applications
- Email
- remote login
- file transfer..

Internetworking

- ARPANET was a great WAN demonstration

- A robust network
- Capable of supporting a variety of applications
- But...
- Its protocol structure did not support the merging of various networks well
- Not an internet
- E.g. ARPANET + packet radio + satellite performed poorly
- A reorganized design was proposed...

TCP/IP

- New set of rules proposed to enable internetworking
- Kahn \& Cerf argued for common rule layer
- Hide differences between different networks instead of translation
- The layer was eventually separated into 2 protocols
- IP (Internet Protocol)

- A means of getting messages moving over multiple links: connectionless
- TCP (Transmission Control Protocol)
- A means of strengthening delivery guarantees between end-points: connection-oriented

Layers \& Structural Ideas

- With universally understood communication rules hosts in different types of network can talk to each other

- Routers talk IP, hosts talk TCP \& IP
- Encapsulation

IP Addressing and Routing

- Location based addressing
- Hierarchical address: Net ID + Host ID
- IP packets routed according to Net ID
- Routers compute routing tables using distributed algorithm

Tier-1 ISPs

1. Level 3
2. Global Crossing
3. NTT
4. Sprint
5. TeliaSonera
6. Tinet
7. Tata
8. Cogent
9. Verizon
10. AT\&T

- Google, Facebook, etc. also setting up private pathways to move data between centers

Local Area Networks

- A major component of the internet are concentrated networks of computers
- university, business
- These simpler networks interface to the internet via routers but what happens inside?
- Basic components
- hubs
- bridges/switches

Popular LANs

- IEEE 802.11 (WiFi) \& IEEE 802.3 (Ethernet)
- Best-effort connectionless service

Medium Access Control (MAC)

- A common challenge: communicating with multiple nodes over a shared medium
- Medium Access Controls for sharing were developed
- Example: Polling protocol on a multidrop line

LAN Addressing

- How do LANs identify themselves?
- If they share a medium some means of identification is necessary
- Globally unique address
- MAC address, MAC-48, physical address
- consists of 48-bits
- burned inside network interface card (NIC)
- How does this work with IP?
- The layering concept

Summary of Some Network Terms

- connectionless
- Send to source before you know that source is accepting
- connection-oriented
- Send to source only after you hear that it is willing to accept
- packet-switching
- Non-dedicated link to source made on fly for each chunk of message
- circuit-switching
- Dedicated link created to source for duration of message
- best-effort service
- not guaranteed
- datagram service
- unacknowledged connectionless service

