EECS 3213 Fall 2014

L6: OSI Reference Model

Sebastian Magierowski York University

Outline

- The OSI Reference Model
 - An organized way of thinking about network design (from low-level to high-level considerations)
 - Although it was once intended to be literally applied to specific networks it failed to be adopted (other than as a general design guide)
 - Actual protocols associated with this design are not in general use
- Architectures
- Protocol stacks
- General terminology
- Interfaces

6.1 Network Architectures

- Complex networks need modular and layered design
 - As we have said many times already
- In general this set of layers is called the network architecture
 - The layers communicate with a set of rules called protocols
 - And the set of protocols used (by the layers) is the protocol stack
- Two important architectures are:
 - OSI Reference Model
 - Technically not "architecture"
 - Does not specify exact services and protocols (or at least no one uses them)
 - Mainly specifies what each layer should do
 - TCP/IP Reference Model

6.3 Physical Layer (The Lowest Layer)

- Transfers bits across link (make sure a 1 arrives as a 1 and 0 arrives as a 0)
- Definition & specification of the physical aspects of a communications link
- Typical Considerations:
 - What electrical signals to represent 1/0
 - How long a bit lasts
 - Simultaneous transmission in both directions
 - How a connection is set up/torn down
 - How many pins in a connector
 - What each pin is for

6.4 Data Link Layer

- Main Job: Make the transmission appear error free
 - Breaks up messages into frames (~100-1000 bytes)
 - Detects errors within frames
 - Allows for acknowledgement of each frame and retransmission
- Flow control
 - Keeps fast TX from swamping slow RX
- Medium access control (MAC)
 - How to control access to shared medium

- Transfers packets across multiple links and/or multiple networks (i.e. routing from source to destination)
- Hierarchical addressing (to locate network nodes)
- Nodes jointly execute routing algorithm to determine paths across the network
- Congestion control to deal with traffic surges

6.6 Transport Layer

- End-to-end layer
 - split incoming data into smaller segments (datagrams)
 - ensure all pieces arrive correctly at other end
- Service variety
 - error-free point-to-point in order, no order guarantee, broadcasting, etc.
 - relies on lower levels to implement such service
- Multiplexing

8

6.7 Application and Upper Layers

- Application Layer: Provides services that are frequently required by applications: DNS, web access, file transfer, email...
- Presentation Layer: machineindependent representation of data...
- Session Layer: dialog management, recovery from errors....

Incorporated into Application Layer

6.8 Headers and Trailers

- Each protocol uses a header that carries addresses, sequence numbers, flag bits, length indicators, etc...
- CRC check bits may be appended for error detection
 Application
 Application
 Application
 Application

10

EECS 3213, F14

6.9 Layers in Action

6.10 OSI Unified View: Layers

- The entities comprising the corresponding layers on different machines are called peer processes
- Layer-n peer processes communicate by exchanging Protocol Data Units (PDUs)

n-PDUs

- Communication is virtual and indirect
 - Each layer passes data & control information to the layer below it until the physical layer is reached and transfer occurs
- PDU header contains control and user information
 - Age, size, error check, address

OSI Unified View: Protocols

- Peer processes interact according to a set of rules
 - Layer n peer protocols n-PDUs

- These rules govern the format and meaning of PDUs
 - e.g. HTTP's "GET" PDU has certain structure and invokes certain protocol-based responses

OSI Unified View: Services

- Layer n+1 entities communicate by invoking the services provided by layer n
- Services are available at Service Access Points (SAPs)
 - A service interface
- The data passed to the layer below is called a Service Data Unit (SDU)
 - Each layer passes data & control information to the layer below it until the physical layer is reached and transfer occurs
- SDUs are encapsulated in PDUs

Layers, Services & Protocols

Service Primitives

- Service is formally specified by a set of primitives
 - Primitives: Structures used for passing user-data and control parameters between layers
 - Primitives are available to processes to access the service

6.11 SDU/PDU Partitioning

Segmentation and reassembly

6.12 Interface Scenarios

- Multiplexing & De-Multiplexing
- Splitting (Inverse Multiplexing) & Recombining

OSI Summary

- Layers: related communications functions
 - Application Layer: HTTP, DNS
 - Transport Layer: TCP, UDP
 - Network Layer: IP
- Services: a protocol provides a communications service to the layer above
 - TCP provides connection-oriented reliable byte transfer service
 - UDP provides best-effort datagram service
- Each layer builds on services of lower layers
 - HTTP builds on top of TCP
 - DNS builds on top of UDP
 - TCP and UDP build on top of IP