LE/EECS 3213 Fall 2014

L8: Physical Media Properties

Sebastian Magierowski York University

Outline

- Key characteristics of physical media
 - What signals in media are made out of
 - Delay through media
 - Attenuation through media
 - Frequency response of media
- Twisted Pair
- Coax
- Optical
- Wireless

8.1 Signal Particles

- Electrons through metal
- Photons through glass and air

e (electrons)_	
- (photons) _	->>

Communications Systems & EM Spectrum

• Frequency of communications signals

8.2 Delay

- Propagation speed of signal
 - $-c = 3 \times 10^8$ meters/second in vacuum
 - $-v = c/\sqrt{\varepsilon}$ speed of light in medium
 - $\epsilon > 1$ is the dielectric constant of the medium
 - $v = 2.3 \times 10^8$ m/sec in copper wire
 - $v = 2.0 \times 10^8 \text{ m/sec}$ in optical fiber

8.2 Attenuation

- Usually the signal power that comes out your channel is less than the signal power that comes in your channel
 - Attenuation = $|A_c|^2 = P_{in}/P_{out}$
- Can also think of it in terms of the channel's frequency response (aka transfer function)
 - $|H_c|^2 = P_{out}/P_{in}$

Summary: Attenuation in Wired and Wireless

- Attenuation varies with media
 - Dependence on distance of central importance
- Wired media attn. has exponential function of distance
 - Received power at *d* meters proportional to 10^{-kd}
 - Attenuation in dB is $k \cdot d$, where k is dB/meter
- Wireless media attn. has *power function of distance*
 - Received power at *d* meters proportional to *d*-*n*
 - <u>Attenuation in dB is *n log d*</u>, where *n* is path loss exponent
 - *n*=2 in free space
 - Signal level maintained for much longer distances
 - Space communications possible

Wired Channel Transfer Characteristics

• Exponential characteristics

Channel Transfer Function and Attenuation

• H_c and A_c relationships

attenvation	$ A_c ^2 = \frac{1}{ H_c ^2} =$	Pin Pout	$\left A_{c}\right ^{2}_{AB} =$	k·d
	Put = 1 11	P_{1n} $\overline{A_{e}} ^{2}$		
	Putlin P.	1, dBm - 1A	$l = l^2 JB$	

Wireless Channel Transfer Characteristics

As your signal leaves the antenna it spreads out over a broader and broader surface

$$(I) = \frac{|H_c|^2}{|P_{in}|^2} = \frac{|P_{out}|^2}{|P_{in}|^2} = \frac{|P_{out}|^2}{|P_{ou}|^2} = \frac{|P_{out}|^2}{|P_{ou}|^2} = \frac{|P_{out}|^2}{|P_{ou}|^2} = \frac{|P_{out}|^$$

$$F_{o} = \frac{\lambda}{4\pi} \qquad \lambda = \frac{c}{r_{o}} \qquad \therefore f = \frac{3 \times 10^{9}}{16}, c = \frac{3 \times 10^{8}}{16}, c =$$

EECS 3213, F14

Comparison: Wired & Wireless Attenuation

• Compare the attenuation as a function of distance

 Compare basic telephone line (k = 0.005 dB/m) to 3-GHz wireless

8.4 Frequency Response

• Typically the attenuation (and channel transfer function) is not flat with frequency

8.5 Twisted Pair

- Wires wound around each other (UTP: unshielded twisted pair)
 - Differential signals
 - Common-mode interference

AWG24 (Telephone/Ethernet) Freq. Response

- $|H_c|^2 (dB)$
 - 0.511 mm diameter

Twisted Pair

- Two insulated copper wires arranged in a spiral pattern to minimize interference
- Various thicknesses, e.g. 0.016 inch (24 gauge)
- Low cost
- Telephone subscriber loop from customer to CO
- Intra-building telephone from wiring closet to desktop
- In old installations, loading coils added to improve quality in 3 kHz band, but more attenuation at higher frequencies

Twisted Pair Bit Rates

- Twisted pairs provide high bit rates at short distances
- Asymmetric Digital Subscriber Loop (ADSL)
 - High-speed Internet Access

2000

3000

Meters

4000

5000

L8: Physical Media

- Lower 3 kHz for voice
- Upper band for data
 - 64 kbps inbound

1000

30

20

10

0

0

EECS 3213, F14

Mbps

- Much higher rates possible at shorter distances
 - Strategy is to bring fiber close to home & then twisted pair
 - Higher-speed access + video

Standard	R (Mbps)	Distance
T-1	1.544	18,000 feet, 5.5 km
DS2	6.312	12,000 feet, 3.7 km
1/4 STS-1	12.960	4500 feet, 1.4 km
1/2 STS-1	25.920	3000 feet, 0.9 km
STS-1	51.840	1000 feet, 300 m

____ [Tanenbaum, 2011]

8.6 ADSL Signals

- Telephone wire has ~1-MHz reasonable bandwidth
 - 3-kHz voice bandwidth created by load coils
- ADSL divides into channels

- Typically 32 for upstream and 218 for downstream
 - ADSL2: 1 Mbps upstream and 12 Mbps downstream
 - 4000 symbols/s per channel
 - 1-15 bits per symbol depending on SNR

ADSL Arrangement

- Splitter combines voice and data
 - NID: Network Interface Device
 - Applies necessary filtering to isolate them

- At company office voice and data split
 - DSLAM aggregates customer data and sends to ISP
 - Digital Subscriber Line Access • **Multiplexer**

8.7 Ethernet LANs

- Office building telephone wires a great candidate for LANs
- Several categories have been defined...
 - <u>Cat3 UTP</u>: ordinary telephone wires
 - <u>Cat5 UTP</u>: tighter twisting to improve signal quality
 - <u>STP</u>: metallic braid around each pair
 - to minimize interference
 - costly
 - Cat7

- 10BASE-T Ethernet
 - 10 Mbps
 - Two Cat3 pairs
 - Manchester coding, 100 meters
- 100BASE-T4 Fast Ethernet
 - 100 Mbps
 - Four Cat3 pairs
 - Three pairs for one direction at-a-time
 - 100/3 Mbps per pair;
 - 8B10B line code, 100 meters

EECS 3213, F14

8.8 Coaxial Cable

- Cylindrical braided outer conductor surrounds insulated inner wire
- High interference immunity
- Higher bandwidth than twisted pair
- Hundreds of MHz
- Cable TV distribution
- Long distance telephone transmission
- **Original Ethernet LAN** medium

EECS 3213, F14

8.9 Cable Modem & TV Spectrum

- Cable TV network originally unidirectional
 - 54-500 MHz TV service
 - 6 MHz = 1 analog TV channel or several digital TV channels
- Cable Modem: shared upstream & downstream
 - Open DOCSIS standard
 - 5 42 MHz upstream into network
 - 2 MHz channels
 - 500 kbps to 4 Mbps
 - > 550 MHz downstream from network
 - 6 MHz channels
 - 36 Mbps

Cable/DSL Network Topology

- Cable
 - Users share medium
 - Managed by "Head-end"
 - FDMA: 6-MHz channels
 - TDMA: Users get minislots
 - CDMA/ALOHA: Users share minislots
 - 500-2000 users per cable
 - Data aggregated on fiber
- DSL
 - No sharing
 - But lower quality link
 - Data aggregated on fiber

EECS 3213, F14

8.10 Optical Fiber

- Light sources (lasers, LEDs) generate pulses of light that are transmitted on optical fiber
 - Very long distances (>1000 km)
 - Very high speeds (>40 Gbps/wavelength)
 - Nearly error-free (BER of 10⁻¹⁵)
- Profound influence on network architecture
 - Dominates long distance transmission
 - Distance less of a cost factor in communications
 - Plentiful bandwidth for new services

Transmission in Optical Fiber

- Very fine glass cylindrical core surrounded by concentric layer of glass (cladding)
- Core has higher index of refraction than cladding
- Light rays incident at less than critical angle θ_{c} is completely reflected back into the core

Multimode & Single-Mode Fiber

- Multimode: Thicker core, shorter reach
 - Rays on different paths interfere causing dispersion & limiting bit rate
- Single mode: Very thin core supports only one mode (path)
 - More expensive lasers, but achieves very high speeds
 - 100 Gbps for 100 km without amplification

Fiber Connections

- Connectors
 - Fiber sockets

- Mechanical splicing
 - Align two cut pieces closely in a sleeve and clamp together
 - 10% light loss

- Fused (melted) together
 - Fusion splice

Optical Fiber Properties

Advantages

- Very low attenuation
- Noise immunity
- Extremely high bandwidth
- Security: Very difficult to tap without breaking
- No corrosion
- More compact & lighter than copper wire

Disadvantages

- New types of optical signal impairments & dispersion
 - Polarization dependence
 - Wavelength dependence
- Limited bend radius
 - If physical arc of cable too high, light lost or won' t reflect
 - Will break
- Difficult to splice
- Mechanical vibration becomes signal noise

8.11 Optical Attenuation

8.12 Optical Bandwidth

• Optical range from λ_1 to 100 $\lambda_1 + \Delta \lambda$ contains bandwidth 50 $B = f_1 - f_2 = \frac{v}{\lambda_1} - \frac{v}{\lambda_1 + \Delta \lambda}$ 10 Loss (dB/km) $= \frac{v}{\lambda_{1}} \left\{ \frac{\Delta \lambda / \lambda_{1}}{1 + \Delta \lambda / \lambda_{1}} \right\} \approx \frac{v \Delta \lambda}{\lambda_{1}^{2}}$ 0.5 • Example: $\lambda_1 = 1450$ nm $\lambda_1 + \Delta \lambda = 1650$ nm: 0.1 $B = \frac{2(10^8)\text{m/s } 200\text{nm}}{(1450 \text{ nm})^2} \approx 19 \text{ THz}$ 0.8 1.0 1.2 1.6 1.8 14 Wavelength (μm)

Wavelength-Division Multiplexing

- Different wavelengths carry separate signals
- Multiplex into shared optical fiber
- Each wavelength like a separate circuit
 - 192 channels 10 Gbps = 1.92 Tbps
 - 64 channels 40 Gbps = 2.56 Tbps

Coarse & Dense WDM

Coarse WDM

- Few wavelengths 4-18 with very wide spacing (~20 nm)
- Low-cost, simple

Dense WDM

- Many tightly-packed wavelengths
- ITU Grid: 0.8 nm separation for 10 Gbps signals
- 0.4 nm for 2.5 Gbps

Regenerators & Optical Amplifiers

- The maximum span of an optical signal is determined by the available power & the attenuation:
 - Ex. If 30 dB power available,
 - then at 1550 nm, optical signal attenuates at 0.25 dB/km,
 - so max span = 30 dB/0.25 km/dB = 120 km
- Optical amplifiers amplify optical signal (no equalization, no regeneration)
- Impairments in optical amplification limit maximum number of optical amplifiers in a path
- Optical signal must be regenerated when this limit is reached
 - Requires optical-to-electrical (O-to-E) signal conversion, equalization, detection and retransmission (E-to-O)
 - Expensive
- Severe problem with WDM systems

DWDM & Regeneration

• Single signal per fiber requires 1 regenerator per span

- DWDM system carries many signals in one fiber
- At each span, a separate regenerator required per signal
- Very expensive

EECS 3213, F14

Optical Amplifiers

- Optical amplifiers can amplify the composite DWDM signal without demuxing or O-to-E conversion
- Erbium Doped Fiber Amplifiers (EDFAs) boost DWDM signals within 1530 to 1620 range
 - Spans between regeneration points >1000 km
 - Number of regenerators can be reduced dramatically
- Dramatic reduction in cost of long-distance communications

8.13 Radio Transmission

- Radio signals: antenna transmits sinusoidal signal ("carrier") that radiates in air/space
- Information embedded in carrier signal using modulation, e.g. QAM
- Communications without tethering
 - Cellular phones, satellite transmissions, Wireless LANs
- Multipath propagation causes fading
- Interference from other users
- Spectrum regulated by national & international regulatory organizations

Radio Spectrum

Examples

Cellular Phone

- Allocated spectrum
- First generation:
 - 800, 900 MHz
 - Initially analog voice
- Second generation:
 - 1800-1900 MHz
 - Digital voice, messaging

Wireless LAN

- Unlicensed ISM spectrum
 - Industrial, Scientific, Medical
 - 902-928 MHz, 2.400-2.4835
 GHz, 5.725-5.850 GHz
- IEEE 802.11 LAN standard
 11-54 Mbps

Point-to-Multipoint Systems

- Directional antennas at microwave frequencies
- High-speed digital communications between sites
- High-speed Internet Access Radio backbone links for rural areas

Satellite Communications

- Geostationary satellite @ 36000 km above equator
- Relays microwave signals from uplink frequency to downlink frequency
- Long distance telephone
- Satellite TV broadcast