$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (in free space), $c=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (in media), $1 \mathrm{~km}=10^{3} \mathrm{~m}, 1 \mathrm{~ms}=10^{-3} \mathrm{~s}, 1 \mathrm{Mb}=10^{6} \mathrm{~b}$

$$
\begin{gathered}
\log _{x} y=\frac{\log _{a} y}{\log _{a} x} \\
C=W_{c} \log _{2}(1+\mathrm{SNR}) \\
y=\int_{a}^{b} x \mathrm{~d} x=\left.\frac{x^{2}}{2}\right|_{a} ^{b}=\left(b^{2}-a^{2}\right) / 2, y=\int_{a}^{b} x^{2} \mathrm{~d} x=\left.\frac{x^{3}}{3}\right|_{a} ^{b}=\left(b^{3}-a^{3}\right) / 3 \\
y(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(2 \pi f_{0} \cdot k \cdot t\right)+\sum_{k=1}^{\infty} b_{k} \sin \left(2 \pi f_{0} \cdot k \cdot t\right) \\
f_{0}=\frac{1}{T}, a_{0}=\frac{1}{T} \int_{0}^{T} y(t) \mathrm{d} t, a_{k}=\frac{2}{T} \int_{0}^{T} y(t) \cdot \cos \left(2 \pi f_{0} \cdot k \cdot t\right) \mathrm{d} t, b_{k}=\frac{2}{T} \int_{0}^{T} y(t) \cdot \sin \left(2 \pi f_{0} \cdot k \cdot t\right) \mathrm{d} t \\
\mathrm{SNR}[\mathrm{~dB}]=10 \log (\mathrm{SNR}), \mathrm{SNR}[\mathrm{~dB}]=6 m-7.2 \\
\mathcal{F}\{\operatorname{rect}(t / T)\}=T \operatorname{sinc}(f T)=T \sin (\pi f T) / \pi f T \\
\mathcal{F}\{\operatorname{sinc}(t / T)\}=T \operatorname{rect}(f T)
\end{gathered}
$$

