\qquad

1. (5 points)
1.) [1] The power of an input signal is $1-\mathrm{mW}$ (milliwatt). What is this power expressed in dBm ?

$$
10 \log 1=O d \mathrm{Bm}
$$

2.) [1] Which cable would you prefer if you wanted the best signal performance, UTP or coax?
$\operatorname{coa} x$
3.) [1] For physical media what typically happens to the attenuation as the signal frequency goes up?
it goes up (gets worse)
4.) [1] In an A-to-D what is the name of the block that follows the sampler block?
quantizer
5.) [1] What is the minimum sampling rate needed to convert a $22-\mathrm{kHz}$ into discrete-time such that the signal can be perfectly recovered with a interpolation filter.

44 kMz or k Samples per second
2. (5 points) Suppose that WDM wavelengths in the $1675-\mathrm{nm}$ band are separated by 0.1 nm . What is the frequency separation in GHz ? What is the net data rate achievable if a total of 120 wavelengths are multiplexed?

$$
\begin{aligned}
& \text { freq. separation }=\frac{v \cdot \Delta \lambda}{\lambda^{2}}=\frac{2 \times 10^{8} \times 0.1 \times 10^{-9}}{\left(1675 \times 10^{-9}\right)^{2}} \\
&=7.1285 \times 10^{9} \mathrm{~Hz} \\
&=7.1285 \mathrm{GHz} \\
& \text { net } R=120 \text { wavelengths }=120 \times 7.1285 \\
&=855.466 \mathrm{ps}
\end{aligned}
$$

3. (5 points) Suppose that a link between two optical hubs has 20 repeaters. Suppose that the probability that a repeater fails during a year is 0.005 and that repeaters fail independently of each other. What is the probability that the link does not fail at all over 10 years.
$p=0.005$ failure in one year
$(1-p)$: no failure of 1 repeater in one year
$(1-p)^{20 \times 10}$: no failure of 20 repeaters in 10 years

$$
=0.367
$$

$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (in free space), $c=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (in media), $1 \mathrm{~nm}=10^{-9} \mathrm{~m}, 1 \mathrm{~ms}=10^{-3} \mathrm{~s}, 1 \mathrm{GHz}=10^{9} \mathrm{~Hz}$

$$
\begin{gathered}
\log _{x} y=\frac{\log _{a} y}{\log _{a} x} \\
C=W_{c} \log _{2}(1+\mathrm{SNR}) \\
y=\int_{a}^{b} x \mathrm{~d} x=\left.\frac{x^{2}}{2}\right|_{a} ^{b}=\left(b^{2}-a^{2}\right) / 2, y=\int_{a}^{b} x^{2} \mathrm{~d} x=\left.\frac{x^{3}}{3}\right|_{a} ^{b}=\left(b^{3}-a^{3}\right) / 3 \\
y(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(2 \pi f_{0} \cdot k \cdot t\right)+\sum_{k=1}^{\infty} b_{k} \sin \left(2 \pi f_{0} \cdot k \cdot t\right) \\
f_{0}=\frac{1}{T}, a_{0}=\frac{1}{T} \int_{0}^{T} y(t) \mathrm{d} t, a_{k}=\frac{2}{T} \int_{0}^{T} y(t) \cdot \cos \left(2 \pi f_{0} \cdot k \cdot t\right) \mathrm{d} t, b_{k}=\frac{2}{T} \int_{0}^{T} y(t) \cdot \sin \left(2 \pi f_{0} \cdot k \cdot t\right) \mathrm{d} t \\
\mathrm{SNR}[\mathrm{~dB}]=10 \log (\mathrm{SNR}), \mathrm{SNR}[\mathrm{~dB}]=6 m-10 \log \left(3 \sigma_{x}^{2} / V^{2}\right), \sigma_{q}^{2}=\Delta^{2} / 12 \\
\mathcal{F}\{\operatorname{rect}(t / T)\}=T \operatorname{sinc}(f T)=T \sin (\pi f T) / \pi f T \\
\mathcal{F}\{\operatorname{sinc}(t / T)\}=T \operatorname{rect}(f T) \\
B=v \Delta \lambda / \lambda^{2}
\end{gathered}
$$

