\qquad

1. (5 points)
1.) [1] In (only) 1 word: What important function in the receiver does a Manchester code assist?
synchnonization
2.) [1] What is the drawback of a Manchester code?
increased bandwidth
3.) [1] In digital receivers when adjacent data symbols start to interfere with each other we call that ...

ISI
4.) [1] What is the maximum number of symbols/s/Hz that I can send in a binary bandpass scheme.

2
5.) [1] What is the maximum number of symbols/s/Hz that I can send in a binary passband scheme using a single carrier.

1
2. (3 points) You are to send 10111000 using a differential line code. What is the sequence of bits that comes out of your differential line coder?

3. (9 points) Sketch a 16-QAM constellation.

4. (4 points) A 256 point constellation is to achieve a data rate of $15-\mathrm{Mbps}$. What is the minimum channel bandwidth needed to support this requirement?

$$
M=256 \quad \text { \# of bits per symbol }=m=\log _{2}(M)=86 \cdot t_{s}
$$

$\frac{15 \mathrm{Mbps}^{2}}{8 \text { bits }}=1.875 \mathrm{MHz} \leftarrow$ bandpass channel bu needed

$$
L=\lceil\sqrt{256}\rceil=16 \leftarrow \begin{gathered}
\text { \#d levels } \\
\text { per campier }
\end{gathered}
$$

$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (in free space), $c=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (in media), $1 \mathrm{~nm}=10^{-9} \mathrm{~m}, 1 \mathrm{~ms}=10^{-3} \mathrm{~s}, 1 \mathrm{GHz}=10^{9} \mathrm{~Hz}$

$$
\begin{gathered}
\log _{x} y=\frac{\log _{a} y}{\log _{a} x} \\
C=W_{c} \log _{2}(1+\mathrm{SNR}) \\
y=\int_{a}^{b} x \mathrm{~d} x=\left.\frac{x^{2}}{2}\right|_{a} ^{b}=\left(b^{2}-a^{2}\right) / 2, y=\int_{a}^{b} x^{2} \mathrm{~d} x=\left.\frac{x^{3}}{3}\right|_{a} ^{b}=\left(b^{3}-a^{3}\right) / 3 \\
y(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(2 \pi f_{0} \cdot k \cdot t\right)+\sum_{k=1}^{\infty} b_{k} \sin \left(2 \pi f_{0} \cdot k \cdot t\right) \\
f_{0}=\frac{1}{T}, a_{0}=\frac{1}{T} \int_{0}^{T} y(t) \mathrm{d} t, a_{k}=\frac{2}{T} \int_{0}^{T} y(t) \cdot \cos \left(2 \pi f_{0} \cdot k \cdot t\right) \mathrm{d} t, b_{k}=\frac{2}{T} \int_{0}^{T} y(t) \cdot \sin \left(2 \pi f_{0} \cdot k \cdot t\right) \mathrm{d} t \\
\mathrm{SNR}[\mathrm{~dB}]=10 \log (\mathrm{SNR}), \mathrm{SNR}[\mathrm{~dB}]=6 m-10 \log \left(3 \sigma_{x}^{2} / V^{2}\right), \sigma_{q}^{2}=\Delta^{2} / 12 \\
\mathcal{F}\{\operatorname{rect}(t / T)\}=T \operatorname{sinc}(f T)=T \sin (\pi f T) / \pi f T \\
\mathcal{F}\{\operatorname{sinc}(t / T)\}=T \operatorname{rect}(f T) \\
B=v \Delta \lambda / \lambda^{2}
\end{gathered}
$$

