

Boolean Algebra

Fundamental Boolean Operations
Boolean algebra is the basic math used in digital circuits and computers.
A Boolean variable takes on only 2 values: $\{0,1\}$, $\{T, F\},\{Y e s, N o\}$, etc.
There are 3 fundamental Boolean operations:

- AND, OR, NOT

\qquad

Boolean Algebra

A truth table specifies output signal logic values for every possible combination of input signal logic values
In evaluating Boolean expressions, the Operation Hierarchy is: 1) NOT 2) AND 3)
OR. Order can be superseded using (...)
Example: $\quad A=T, B=F, C=T, D=T$
What is the value of $Z=(\bar{A}+B) \cdot(C+\bar{B} \cdot D)$?

$$
\begin{aligned}
& Z=(\bar{T}+F) \cdot(C+\bar{B} \cdot D)=(F+F) \cdot(C+\bar{B} \cdot D) \\
& =F \cdot(C+\bar{B} \cdot D)=F
\end{aligned}
$$

Deriving Logic Expressions From Truth Tables

What is the Boolean expression for Z ?

$$
Z=\bar{A} \cdot \bar{B}+A \cdot B
$$

Minterms and Maxterms

Minterms

- AND term of all input variables
- For variables with value 0 , apply complements

Maxterms

- OR factor with all input variables
- For variables with value 1, apply complements

Minterms and Maxterms

A function with n variables has 2^{n} minterms (and Maxterms) - exactly equal to the number of rows in truth table Each minterm is true for exactly one combination of inputs
Each Maxterm is false for exactly one combination of inputs

Equivalent Logic Expressions

Two equivalent logic expressions can be derived from Truth Tables:
Sum-of-Products (SOP) expressions:

- Several AND terms OR'd together, e.g.

Rules for Deriving SOP Expressions

Find each row in TT for which output is 1 (rows 1 \& 4)
For those rows write a minterm of all input variables.
OR together all minterms found in (2):
Such an expression is called a
Canonical SOP
Product-of-Sum (POS) expressions:

- Several OR terms AND'd together, e.g.

$$
(A+\bar{B}+C)(A+\bar{B}+C)
$$

MK
Chapter 3 - Arithmetic for Computers - 9
M<

Rules for Deriving POS Expressions

Find each row in TT for which output is 0 (rows 2 \& 3)
For those rows write a maxterm
AND together all maxterm found in (2):
Such an expression is called a Canonical POS.

A	8	Z	Minterms	Maxterms	$Z=(A+\bar{B})(\bar{A}+B)$
0	0	1	$\bar{A} \cdot \bar{B}$	$A+B$	
0	1	0	$\bar{A} \cdot B$	$A+\bar{B}$	
1	0	0	${ }^{\text {A }}$ B	$\bar{A}+B$	
1	1	1	${ }^{A B}$	$\bar{A}+\bar{B}$	

CSOP and CPOS

Canonical SOP: $Z=\bar{A} \bar{B}+A B$
Canonical POS: $Z=(A+\bar{B})(\bar{A}+B)$
Since they represent the same truth table, they should be identical
Verify that $Z=\bar{A} \bar{B}+A B \equiv(A+\bar{B})(\bar{A}+B)$

CPOS and CSOP expressions for the same TT are logically equivalent. Both represent the same information.

M<
Chapter 3 - Arithmetic for Computers - 12

Boolean Identities

Boolean Identities

The right side is the dual of the left side

- DeMorgan's laws very useful: 9a and 9b

Duals formed by replacing

> AND OR \rightarrow OR

The dual of any true statement in Boolean algebra is also a true statement.
$\overline{A+B}=\bar{A} \cdot \bar{B}$

$\overline{A B}=\bar{A}+\bar{B}$

Chapter 3 - Arithmetic for Computers - 16

Activity 2

Proofs of some Identities:
12b: $\quad A+\bar{A} B=A+B$

13a: $A B+\bar{A} C+B C=A B+\bar{A} C$

Simplifying Logic Equations

Simplifying logic expressions can lead to using
smaller number of gates (parts) to implement the logic expression
Can be done using

- Boolean Identities (algebraic)
- Karnaugh Maps (graphical)

A minimum SOP (MSOP) expression is one that has no more AND terms or variables than any other equivalent SOP expression.
A minimum POS (MPOS) expression is one that has no more OR factors or variables than any other equivalent POS expression.
There may be several MSOPs of an expression
Find an MSOP for

$$
\begin{aligned}
F & =\bar{X} W+Y+\bar{Z}(Y+\bar{X} W) \\
& =\bar{X} W+Y+\bar{Z} Y+\bar{Z} \bar{X} W \\
& =\bar{X} W(1+\bar{Z})+Y(1+\bar{Z}) \\
& =\bar{X} W+Y
\end{aligned}
$$

MK
Chapter 3 - Arithmetic for Computers - 20

Activity 3

Find an MSOP for

$$
\begin{aligned}
F & =\bar{W} X Y Z+W X Y \bar{Z}+W X Y Z \\
& =X Y Z(\bar{W}+W)+W X Y(Z+Z) \\
& =X Y Z(1)+W X Y(1) \\
& =X Y Z+W X Y \\
& =X Y(Z+W)
\end{aligned}
$$

Digital Circuit Classification

Combinational circuits

- Output depends only solely on the current combination of circuit inputs
- Same set of input will always produce the same outputs
- Consists of AND, OR, NOR, NAND, and NOT gates

Sequential circuits

- Output depends on the current inputs and state of the circuit (or past sequence of inputs)
- Memory elements such as flip-flops and registers are required to store the "state"
- Same set of input can produce completely different outputs
M<
Chapter 3 - Arithmetic for Computers - 22

Multiplexor

A multiplexor (MUX) selects data from one of N inputs and directs it to a single output, just like a railyard switch

- 4 -input Mux needs 2 select lines to indicate which input to route through
- N-input Mux needs $\log _{2}(N)$ selection lines

MK
Chapter 3 - Arithmetic for Computers - 23

Multiplexor (2)

An example of 4-input Mux

$3 \mathrm{M}<$
Chapter 3 - Arithmetic for Computers - 24

Decoder

A decoder is a circuit element that will decode an N-bit code.
It activates an appropriate output line as a function of the applied N -bit input code

Truth Table										
A_{2}	A_{1}	A_{0}	Z_{0}	Z_{1}	Z_{2}	Z_{8}	z_{4}	$2{ }_{5}$	7_{6}	z_{7}
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0		0	0	0	1	0	0	0
1	0	1		0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1		0	0	0	0	0	0	1

VK
Chapter 3 - Arithmetic for Computers - 25

Why Bit Storage ?

Flight attendant call button

- Press call: light turns on

Stays on after button released

- Press cancel: light turns off
- Logic gate circuit to implement this?

Doesn' t work. $\mathrm{Q}=1$ when Call $=1$, but doesn't stay 1 when Call returns to 0 Need some form of "memory" in the circuit

Bit Storage Using SR Latch

Simplest memory elements are Latch and Flip-Flops
SR (set-reset) latch is an un-clocked latch
pulses

- example: period $=20 \mathrm{~ns}$
- Output $\mathrm{Q}=1$ when $\mathrm{S}=1, \mathrm{R}=0$ (set condition)
- Output $\mathrm{Q}=0$ when $\mathrm{S}=0, \mathrm{R}=1$ (reset condition) ency: 1/period
- example: frequency $=1$ / $20 \mathrm{~ns}=50$ MHz

Freq	Period
100 GHz	0.01 ns
10 GHz	0.1 ns
1 GHz	1 ns
100 MHz	10 ns
10 MHz	100 ns

Edge-triggered clocking: all state
changes occur on a clock edge.

MK
Chapter 3 - Arithmetic for Computers - 27

Clock and Change of State

Clock controls when the state of a memory element changes

Clock Edge Triggered Bit Storage

Flip-flop - Bit storage that stores on clock edge, not level D Flip-flop

- Two latches, master and slave latches.
- Output of the first goes to input of second, slave latch has

To ensure that the values written into the state inverted clock signal (falling-edge trigger)
clock must have a long enough period

M< Chapter 3-Arithmetic for Computers - 30

Setup and Hold Time

Setup time

- The minimum amount of time the data signal should be held steady before the clock edge arrives.
Hold time
- The minimum amount of time the data signal should be held steady after the clock edge.

MK

Half Adders

Need to add bits $\{0,1\}$ of A_{i} and B_{i}
Associate

C_{t+1}

- binary bit $0 \leftrightarrow$ logic value $\mathrm{F}(0) A: A_{n} \ldots A_{i+1} A_{1} \ldots A_{0}$
- binary bit $1 \leftrightarrow$ logic value T (1) $B: B_{n} \ldots B_{i+1} B_{i} \ldots B_{0}$ S
This leads to the following truth table

A_{i}	B_{1}	Sumi	Carry $_{\text {li+1 }}$	$S U M_{i}=\overline{A_{i}} B_{i}+A_{i} \bar{B}_{i}=A_{i} \oplus B_{i}$
0	0	0	0	
0	1	1	0	CARRY $_{i+1}=A_{i} B_{i}$
	0	1	0	

Half Adder Circuit

$S U M_{i}=\overline{A_{i}} B_{i}+A_{i} \bar{B}_{i}=A_{i} \oplus B_{i}$
CARRY $_{i+1}=A_{i} B_{i}$

M<
Chapter 3 - Arithmetic for Computers - 34

Half Adder Limitations

Half adder circuits do not suffice for general addition because they do not include the carry bit from the previous stage of addition, e.g

Carry
A
B
SUM

0
0
:---

Full Adders (1-Bit ALU)

Full adders can use the carry bit from the previous stage of addition

MK
Chapter 3 - Arithmetic for Computers - 36

Full Adder Circuit

SUM $=\left(A_{i} \oplus B_{i}\right) \oplus C_{i} \quad C_{i+1}=A_{i} B_{i}+C_{i}\left(A_{i} \oplus B_{i}\right)$

Note: A full adder adds 3 bits. Can also consider as first adding first two and then the result with the carry

M< Chapter 3 - Arithmetic for Computers - 38

Ripple Carry Adders

4 FA's cascaded to form a 4-bit adder
In general, N-FA's can be used to form an N-bit adder
Carry bits have to propagate from one stage to the next. Inherent propagation delays associated with this
Output of each FA is therefore not stable until the carry-in from the previous stage is calculated

1-bit ALU for SLT
operations
slt \$s1, \$s2, \$s3

- If (\$s2<\$s3), \$s1=1, else $\$$ s $1=0$
adding one input "less" - if ($\mathrm{a}<\mathrm{b}$), set less to 1 or if $(a-b)<0$, set less to 1
- If the result of subtraction is negative, set less to 1

Enhancement to 1-bit Adder(5)
How to determine if the result is negative?

- Negative $\rightarrow \rightarrow$ Sign bit value=1
Create a new output "Set" direct output from the adder and use only for slt An overflow detection is included for the most significant bit ALU

32-Bit ALU

Arithmetic for Computers

Operations on integers

- Addition and subtraction
- Multiplication and division
- Dealing with overflow

Floating-point real numbers

- Representation and operations

MK
Chapter 3-Arithmetic for Computers - 48

Dealing with Overflow

Some languages (e.g., C) ignore overflow

- Use MIPS addu, addui, subu instructions

Other languages (e.g., Ada, Fortran) require raising an exception/interrupt

- Use MIPS add, addi, sub instructions
- On overflow, invoke exception/interrupt handler

Save PC in exception program counter (EPC) register
Jump to predefined handler address
mfc 0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Multiplication

Start with long-multiplication approach

	Multiolication Hardware (2)				
	Iteration	Step	Multiplier	Multiplicand	Product
	0	Initial values	0011	00000010	00000000
	1	1a: $1 \Rightarrow$ Prod $=$ Prod + Mcand	0011	00000010	00000010
		2: Shift left Multiplicand	0011	00000100	00000010
		3: Shift right Multiplier	00011	00000100	00000010
	2	1a: $1 \Rightarrow$ Prod $=$ Prod + Mcand	0001	00000100	00000110
		2: Shift left Multiplicand	0001	00001000	00000110
		3: Shift right Multiplier	0000	00001000	00000110
	3	1: $0 \Rightarrow$ No operation	0000	00001000	00000110
		2: Shift left Multiplicand	0000	00010000	00000110
		3: Shift right Multiplier	0000	00010000	00000110
	4	1: $0 \Rightarrow$ No operation	0000	00010000	00000110
		2: Shift left Multiplicand	0000	00100000	00000110
		3: Shift right Multiplier	0000	00100000	00000110
	- Multiply example using flow chart algorithm - The bit examined to determine the next step is circled in color				
3	$\mathrm{M}<$		Chapter 3 - Arithmetic for Computers - 54		

Optimized Multiplier

Perform steps in parallel: add/shift
Read/Write/Shift

One cycle per partial-product addition

- That's ok, if frequency of multiplications is low

MIPS Multiplication

Two 32-bit registers for product

- HI: most-significant 32 bits
- LO: least-significant 32-bits

Instructions

- mult rs, rt / multu rs, rt 64-bit product in HI/LO
- mfhi rd / mflo rd Move from HI/LO to rd Can test HI value to see if product overflows 32 bits
- mul rd, rs, rt Least-significant 32 bits of product $\rightarrow r$ rd

MK
Chapter 3 - Arithmetic for Computers - 56

Floating Point

Representation for non-integral numbers - Including very small and very large numbers

Like scientific notation
$=-2.34 \times 10^{56} \longleftarrow$ normalized

- $+0.002 \times 10^{-4}$

In binary
$- \pm 1 . x x x x x x x_{2} \times 2^{y y y y}$
Types float and double in C

IEEE Floating-Point Format

single: 8 bits double: 11 bits	single: 23 bits double: 52 bits

| S Exponent | Fraction |
| :--- | :--- | :--- |

$x=(-1)^{\mathrm{S}} \times(1+$ Fraction $) \times 2^{(\text {Exponent -Bias) }}$
S : sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative $)$
Normalize significand: $1.0 \leq \mid$ significand $\mid<2.0$

- Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- Significand is Fraction with the "1." restored

Exponent(excess representation)=Actual exponent + Bias

- Ensures exponent is unsigned
- Single: Bias = 127; Double: Bias = 1023

MK

Chapter 3 - Arithmetic for Computers - 63

Double-Precision Range

Exponents 0000... 00 and $1111 \ldots 11$ reserved
Smallest value

- Exponent: 00000000001 \Rightarrow actual exponent $=1-1023=-1022$
Fraction: $000 \ldots 00 \Rightarrow$ significand $=1.0$
$\pm \pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
Largest value
- Exponent: 11111111110
\Rightarrow actual exponent $=2046-1023=+1023$
Fraction: 111... $11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating Point Standard

Defined by IEEE Std 754-1985
Developed in response to divergence of representations

- Portability issues for scientific code

Now almost universally adopted
Two representations

- Single precision (32-bit)
- Double precision (64-bit)

MK
Chapter 3 - Arithmetic for Computers - 62

Single-Precision Range

Exponents 00000000 and 11111111 reserved
Smallest value

- Exponent: 00000001
\Rightarrow actual exponent $=1-127=-126$
- Fraction: 000... $00 \Rightarrow$ significand $=1.0$
$\pm \pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
Largest value
- exponent: 11111110
\Rightarrow actual exponent $=254-127=+127$
- Fraction: $111 . .11 \Rightarrow$ significand ≈ 2.0
$\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$
M< Chapter 3 - Arithmetic for Computers - 64

Floating-Point Precision

Relative precision

- all fraction bits are significant
- Single: approx 2^{-23}

Equivalent to $23 \times \log _{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision

- Double: approx 2^{-52}

Equivalent to $52 \times \log _{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example
Represent -0.75
$--0.75=(-1)^{1} \times 1.1_{2} \times 2^{-1}$

- $\mathrm{S}=1$
- Fraction $=1000 \ldots 00_{2}$
- Exponent $=-1+$ Bias

Single: $-1+127=126=01111110_{2}$ Double: $-1+1023=1022=01111111110_{2}$
Single: 1011111101000...00
Double: 1011111111101000... 00

Floating-Point Addition

Floating-Point Addition (2)
Consider a 4-digit decimal example

- $9.999 \times 10^{1}+1.610 \times 10^{-1}$

1. Align decimal points

- Shift number with smaller exponent
$=9.999 \times 10^{1}+0.016 \times 10^{1}$

2. Add significands

- $9.999 \times 10^{1}+0.016 \times 10^{1}=10.015 \times 10^{1}$

3. Normalize result \& check for over/underflow

- 1.0015×10^{2}

4. Round and renormalize if necessary

- 1.002×10^{2}

MK

Floating-Point Addition (3)

Now consider a 4-digit binary example
$=1.000_{2} \times 2^{-1}+-1.110_{2} \times 2^{-2}(0.5+-0.4375)$

1. Align binary points

- Shift number with smaller exponent
$=1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}$

2. Add significands
$=1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}=0.001_{2} \times 2^{-1}$
3. Normalize result \& check for over/underflow

- $1.000_{2} \times 2^{-4}$, with no over/underflow

4. Round and renormalize if necessary

- $1.000_{2} \times 2^{-4}$ (no change) $=0.0625$

FP Adder Hardware

Much more complex than integer adder
Doing it in one clock cycle would take too long

- Much longer than integer operations
- Slower clock would penalize all instructions

FP adder usually takes several cycles

- Can be pipelined

FP Adder Hardware

Floating-Point Multiplication

Consider a 4-digit decimal example

- $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$

1. Add exponents

- For biased exponents, subtract bias from sum
- New exponent $=10+-5=5$

2. Multiply significands

- $1.110 \times 9.200=10.212 \Rightarrow 10.212 \times 10^{5}$

3. Normalize result \& check for over/underflow

- 1.0212×10^{6}

4. Round and renormalize if necessary

- 1.021×10^{6}

5. Determine sign of result from signs of operands - $+1.021 \times 10^{6}$

Floating-Point Multiplication(2)

Floating-Point Multiplication(3)

Now consider a 4-digit binary example
$=1.000_{2} \times 2^{-1} \times-1.110_{2} \times 2^{-2}(0.5 \times-0.4375)$

1. Add exponents

- Unbiased: $-1+-2=-3$
- Biased: $(-1+127)+(-2+127)=-3+254-127=-3+127$

2. Multiply significands

- $1.000_{2} \times 1.110_{2}=1.110_{2} \Rightarrow 1.110_{2} \times 2^{-3}$

3. Normalize result \& check for over/underflow

- $1.110_{2} \times 2^{-3}$ (no change) with no over/underflow

4. Round and renormalize if necessary

- $1.110_{2} \times 2^{-3}$ (no change)

5. Determine sign: $+\mathrm{ve} \times-\mathrm{ve} \Rightarrow-\mathrm{ve}$

- $-1.110_{2} \times 2^{-3}=-0.21875$

MK
Chapter 3 - Arithmetic for Computers - 76

FP Arithmetic Hardware

FP multiplier is of similar complexity to FP adder

- But uses a multiplier for significands instead of an adder
FP arithmetic hardware usually does
- Addition, subtraction, multiplication, division, reciprocal, square-root
- FP \leftrightarrow integer conversion

Operations usually takes several cycles

- Can be pipelined

FP Instructions in MIPS

FP hardware is coprocessor 1

- Adjunct processor that extends the ISA

Separate FP registers

- 32 single-precision: \$f0, \$f1, ... \$\$31
- Paired for double-precision: \$f0/\$f1, \$f2/\$f3, . Release 2 of MIPs ISA supports 32×64-bit FP reg's
FP instructions operate only on FP registers
Programs generally don't do integer ops on FP data, or vice versa
- More registers with minimal code-size impact

FP load and store instructions

- 1wc1, 1dc1, swc1, sdc1
e.g., 1dc1 \$f8, 32(\$sp)

MK

FP Instructions in MIPS (2)

Single-precision arithmetic

- add.s, sub.s, mul.s, div.s e.g., add.s \$f0, \$f1, \$f6

Double-precision arithmetic

- add.d, sub.d, mul.d, div.d e.g., mul.d \$f4, \$f4, \$f6

Single- and double-precision comparison
$=$ C. $x x . \mathrm{s}, \mathrm{c} . x x . \mathrm{d}(x x$ is eq, $7 \mathrm{t}, 1 \mathrm{e}, \ldots$)

- Sets or clears FP condition-code bit e.g.c.7t.s \$f3, \$f4

Branch on FP condition code true or false - bc1t, bc1f
e.g., bc1t TargetLabe1

Right Shift and Division

Left shift by iplaces multiplies an integer by 2^{i}
Right shift divides by 2^{i} ?

- Only for unsigned integers

For signed integers

- Arithmetic right shift: replicate the sign bit
- e.g., -5 / 4
$11111011_{2} \gg 2=11111110_{2}=-2$
Rounds toward $-\infty$
- c.f. $11111011_{2} \ggg 2=00111110_{2}=+62$

Acknowledgement

The slides are adopted from Computer
Organization and Design, 5th Edition
by David A. Patterson and John L. Hennessy
2014, published by MK (Elsevier)

