
 

Instructors Solutions to Assignment 2 
Problem 3.2 

(i) y(t) + 4 y(t) +8y(t) = x(t) + x(t) with x(t) = e−4tu(t), y(0) = 0,  and y(0) = 0.   

 (a) Particular solution: The particular solution for input x(t) = exp(−4t)u(t) is of the form  

  )(4 tu Ke(t) y t
p

−= . 

 Substituting the particular solution in the differential equation for system (i) and solving the 
resulting equation gives K = −3/8. 

 

 (b)  Homogeneous solution: The characteristic equation of the LTIC system (i) is  

  0842 =++ ss , 

 which has roots at s = −2 ± j2. The zero-input response is given by 

)2sin()2cos()( 22 tBetAety tt
h

−− +=  

 for t ≥ 0, with A and B being constants.  

  

(c) Overall response of the system: The overall response of the system is obtained by summing up the 
above two responses, and use initial conditions to derive A and B, and it is given by 

( ) )()2sin()2cos()( 422
8
3 tuetetety ttt −−− −−= . 

 (iii) y(t) + 2 y(t) + y(t) = x(t) with x(t) = cos(t) + sin(2t)⎡⎣ ⎤⎦u(t), y(0) = 3,  and y(0) =1.   

(a) Particular solution: The particular solution for input x(t) = [cos(t) + sin(t)]u(t) is of the form  

  )2sin()2cos()sin()cos( 4321 tKtKtKt K(t) y p +++= . 

 Substituting the particular solution in the differential equation for system (iii) and solving the 
resulting equation gives  

 ( ) (
) ( ) )2sin(4)cos()2sin()2cos()sin()cos(1)2cos(2

)2sin(2)cos()sin(2)2sin(4)2cos(4)sin()cos(
43214

3214321
tttKtKtKtKtK

tKtKtK tKtKtKtK
−−=+++++

−+−+−−−−  

 Collecting the coefficients of the cosine and sine terms, we get 

  ( ) ( )
( ) ( ) 0)2sin(444)2cos(44

)sin(2)cos(12
434343

212121
=++−−+++−

++−−++++−
tKKK tKKK

tKKK tKKK  

       which gives K1 = 0, K2 = −0.5, K3 = 0.64, and K4 = 0.48. 

 

(b) Homogeneous solution: The characteristic equation of the LTIC system (iii) is  
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  0122 =++ ss , 

 which has roots at s =  −1, −1. The zero-input response is given by 
tt

zi BteAety −− +=)(  

 for t ≥ 0, with A and B being constants.  

 

(c) Overall response of the system: The overall response of the system is obtained by summing up the 
above two responses, and use initial conditions to determine A and B, it is given by 

  ( ) ( ) )()2sin(48.0)2cos(64.0)sin(5.01.164.0)(43)( tutttteetuteety tttt ++−−−++= −−−−  

 

 

Problem 3.5 

 (ii) The output y(t) is given by 

∫∫
∞−

∞

∞−

τ−τ=τ−ττ−=−∗−=
0

)()()()()()( dtudtuutututy . 

 The output y(t) is given by 

  ).()0(if
)0(if0

)0(if)(

)0(if0
)()(

0
0

ttutt
t

tdtu

t
dtuty

t

−−=
⎩
⎨
⎧

<−
≥=

⎪
⎩

⎪
⎨

⎧

<τ−τ

≥
=τ−τ= ∫∫

∞−

 

 The aforementioned convolution can also be computed graphically. 

 (iv) The output y(t) is given by 

∫∫
∞−

τ−
∞

∞−

τ−−τ− ττ−=ττ−τ−=∗−=
0
53)(3232 )()()()()()( dtueedtueuetuetuety tttt . 

 Solving for the two cases (t ≥ 0) and (t < 0), we get 

  
⎪⎩

⎪
⎨
⎧

≥
<

=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥τ

<τ
=ττ−= −

∞−

τ−

∞−

τ−

∞−

τ−

∫

∫
∫ ).0(

)0(

)0(

)0(
)()( 3

5
1

2
5
1

0
53

53
0
53

te
te

tdee

tdee
dtueety t

t

t

t
t

t  

 Therefore, the output y(t) is given by 

  ).()()( 3
5
12

5
1 tuetuety tt −+−=  

  

Problem 3.6 

 (ii) Using the graphical approach, the convolution of x(t) with z(t) is shown in Fig. S3.6.2,  where we 
consider six different cases for different values of t. 
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(a) Waveform for z(τ) (b) Waveform for x(τ) (c) Waveform for x(−τ) 
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(d) Waveform for x(t−τ)  (e) Overlap btw z(τ) and x(t−τ) for (t<−1) (f) Overlap btw z(τ) and x(t−τ) for 
(−1≤t<0) 
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(g) Overlap btw z(τ) and x(t−τ) for 
(0≤t<1) (h) Overlap btw z(τ) and x(t−τ) for (1≤t<2) (i) Overlap btw z(τ) and x(t−τ) for 

(2≤t<3) 
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 (j) Convolution output y2(t)  

Fig. S3.6.2: Convolution of x(t) with z(t) in Problem 3.6(ii). 

 

 Case I (t < −1): Since there is no overlap, 0)(2 =ty . 
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 Case IV (1 ≤ t < 2): 
y2 (t) = (−1).τ dτ

t−2

t−1

∫ + 1.τ dτ
t−1

1

∫
= − (t−1)2

2 − (t−2)2
2( )+ 1

2 −
(t−1)2
2( ) = − t2

2 + 3
2 .

 

 Case V (2 ≤ t < 3): 2
3

22
1

2
)2(

1

2
2 2).1()(

22

+−=−=ττ−= −

−
∫ tdty tt

t

. 

 Case VI (t  > 4): Since there is no overlap, )(2 ty  = 0. 

 Combining all the cases, the result of the convolution )()()(2 tztxty ∗=  is given by 
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 The output is y2(t) plotted in Fig. S3.6.2(j). 

 (iv) Using the graphical approach, the convolution of x(t) with v(t) is shown in Fig. 3.6.4,  where we 
consider six different cases for different values of t. 
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(d) Overlap btw v(τ) and x(t−τ) for (t<−1)  (e) Overlap btw v(τ) and x(t−τ) for (−1≤t<0) (f) Overlap btw v(τ) and x(t−τ) for (0≤t<1) 
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(g) Overlap btw v(τ) and x(t−τ) for (1≤t<2) (h) Overlap btw v(τ) and x(t−τ) for (2≤t<3) (i) Overlap btw v(τ) and x(t−τ) for (t>3) 
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 (j) Convolution output y4(t)  

Fig. S3.6.4: Convolution of x(t) with v(t) in Problem 3.6(iv). 
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 Case IV (1 ≤ t < 2): ( ) ( ) ( )
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 Case V (2 ≤ t < 3): ( ))2(22
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2
4 ).1()( −−−

−

τ− −=τ−= ∫ t

t

eedety . 

 Case VI (t  > 4): Since there is no overlap, )(4 ty  = 0. 

 Combining all the cases, the result of the convolution )()()(4 tvtxty ∗=  is given by 
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 The output is y4(t) plotted in Fig. S3.6.4(j). 

Problem 3.12 

(i) System h1(t) is NOT memoryless since h1(t) ≠ 0 for t ≠ 0. 
System h1(t) is causal since h1(t) = 0 for t < 0. 
System h1(t) is BIBO stable since  

5 51
5 0

6| 1( ) | ( ) ( ) 1
5

t th t dt t dt e u t dt eδ
∞ ∞ ∞

∞− −

−∞ −∞ −∞

⎡ ⎤= + = + − = <∞⎣ ⎦∫ ∫ ∫ . 

(ii) System h2(t) is NOT memoryless since h3(t) ≠ 0 for t ≠ 0. 
System h2(t) is causal since h2(t) = 0 for t < 0. 
System h2(t) is BIBO stable since  

2 2 21
2 0
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2

t t th t dt e u t dt e dt e
∞ ∞ ∞

∞− − −

−∞ −∞

⎡ ⎤= = = − = < ∞⎣ ⎦∫ ∫ ∫ . 

(iii) System h3(t) is NOT memoryless since h3(t) ≠ 0 for t ≠ 0. 
System h3(t) is causal since h3(t) = 0 for t < 0. 
System h3(t) is BIBO stable since 

∫ ∫∫
∞

∞−

∞
−

∞
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− ∞<π=π=
0

55 )2sin()()2sin(|)(3| dttedttutedtth tt . 

(iv) System h4(t) is NOT memoryless since h4(t) ≠ 0 for t ≠ 0. 
System h4(t) is NOT causal since h4(t) ≠ 0 for t < 0. 
System h4(t) is BIBO stable since  
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2 dtdtedtedtth tt . 

(v) System h5(t) is NOT memoryless since h5(t) ≠ 0 for t ≠ 0. 
System h5(t) is NOT causal since h5(t) ≠ 0 for t < 0. 
System h5(t) is BIBO stable since  

∫ ∫
∞

∞− −−

∞<=== 16
2

|)(5|
4

4

24

4

ttdtdtth . 

(vi) System h6(t) is NOT memoryless since h6(t) ≠ 0 for t ≠ 0. 
System h6(t) is NOT causal since h6(t) ≠ 0 for t < 0. 
System h6(t) is NOT BIBO stable since  
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∞== ∫∫
∞

∞−

∞

∞−

dttdtth |)10sin(||)(6| . 

Consider the bounded input signal sin(10 )t . If this signal is applied to the system, the output can 
be calculated as: 

( ) ( ) ( ) sin(10 )sin(10 10 )y t x h t d t dτ τ τ τ τ τ
∞ ∞

−∞ −∞

= − = −∫ ∫  

The output at t=0 is given by, 

y(0) = sin(10τ )sin(−10τ )dτ
−∞

∞

∫ = − sin2(10τ )dτ
−∞

∞

∫ = − 1
2 1− cos(20τ )( )dτ
−∞

∞

∫

= − 1
2 dτ
−∞

∞

∫
= ∞


+ 1
2 cos(20τ )dτ
−∞

∞

∫
= finite  value

  
= −∞

 

It is observed that the output becomes unbounded even if the input is always bounded. This is 
because the system is not BIBO stable. 

 

(vii) System h7(t) is NOT memoryless since h7(t) ≠ 0 for t ≠ 0. 
System h7(t) is causal since h7(t) = 0 for t < 0. 
System h7(t) is NOT BIBO stable since  

∞==∫ ∫
∞

∞−

∞

0

)5cos(|)(7| dttdtth . 

Consider the bounded input signal cos(5 )t . If this signal is applied to the system, the output can be 
calculated as: 

0

( ) ( ) ( ) cos(5 5 )cos(5 ) ( ) cos(5 5 )cos(5 )y t x t h d t u d t dτ τ τ τ τ τ τ τ τ τ
∞ ∞ ∞

−∞ −∞

= − = − = −∫ ∫ ∫ . 

The output at t=0 is given by, 

y(0) = cos(−5τ )cos(5τ )dτ
0

∞

∫ = cos2(5τ )dτ
0

∞

∫ = 1
2 1+ cos(10τ )( )dτ
0

∞

∫

= 1
2 dτ

0

∞

∫
= ∞


+ 1
2 cos(10τ )dτ
0

∞

∫
= finite  value

  
= ∞

 

It is observed that the output becomes unbounded at t=0 even if the input is always bounded. This 
proves that the system is not BIBO stable. 

 

(viii) System h8(t) is NOT memoryless since h8(t) ≠ 0 for t ≠ 0. 
System h8(t) is NOT causal since h8(t) ≠ 0 for t < 0. 
System h8(t) is BIBO stable since  
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[ ]

ln(0.95) ln(0.95)

0
0 0

2| 8( ) | 0.95 2 0.95 2
ln(0.95)

2 2                  0 1 39
ln(0.95) ln(0.95)

t t t th t dt dt dt e dt e
∞ ∞ ∞ ∞

∞

−∞ −∞

⎡ ⎤= = = = ⎣ ⎦

= − = − = < ∞

∫ ∫ ∫ ∫
 

(ix) System h9(t) is NOT memoryless since h8(t) ≠ 0 for t ≠ 0. 
System h9(t) is NOT causal since h8(t) = 0 for t < 0. 
System h8(t) is BIBO stable since  

∞<==∫ ∫
∞

∞− −

21|)(9|
1

1

dtdtth . ▌ 

Problem 3.14 

(i) System (i) is invertible with the impulse response h1i(t) of its inverse system given by 

  )2()(1 5
1 +δ= tth i . 

(ii) System (ii) will be invertible if there exists an impulse response 2 ( )ih t  such that 

  )()(2)(2 tthth i δ=∗ . 

 Substituting the value of h2(t), we get 

  )()2(2)(2 tthth ii δ=++  

 which simplifies to )2(2)2()(2 −−−δ= thtth ii . 

 Substituting the value of )4(2)4()2(2 −−−δ=− thtth ii  in the earlier expression gives 

)4(2)4()2()(2 −+−δ−−δ= thttth ii . 

Iterating the above procedure yields, 

∑
∞

=

+ −δ−=
1

1 )2()1()(2
m

m
i mtth . 

Therefore, the system is invertible with the impulse response of the inverse system given above. 

(iii) System (iii) will be invertible if there exists an impulse response 3 ( )ih t  such that 

  )()(3)(3 tthth i δ=∗ . 

 Substituting the value of h3(t), we get 

  )()1(3)1(3 tthth ii δ=−++  

 which simplifies to )2(3)1()(3 −−−δ= thtth ii . 

 Substituting the value of )4(3)3()2(3 −−−δ=− thtth ii  in the earlier expression yields 

 )4(3)3()1()(3 −+−δ−−δ= thttth ii . 

Iterating the above procedure yields, 
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 ∑
∞

=

+ −+δ−=
1

1 )21()1()(3
m

m
i mtth . 

(iv) System (iv) will be invertible if there exists an impulse response 4 ( )ih t  such that 

  )()(4)(4 tthth i δ=∗ . 

 Substituting the value of h4(t), we get 

  )()()(4 tdtuh i δ=ττ−τ∫
∞

∞−

 

 which simplifies to )()(4 tdh
t

i δ=ττ∫
∞−

. 

 Differentiating both sides of the above expression with respect to t, we obtain 

  ( ))()(4 tth dt
d

i δ= . 

 In other words, system (iv) is an integrator. As expected, its inverse system is a differentiator. 

(v) System (v) will be invertible if there exists an impulse response 5 ( )ih t  such that 

  )()(5)(5 tthth i δ=∗ . 

 Substituting the value of h5(t), we obtain 

  )()(rect)(5 4 tdh t
i δ=ττ∫

∞

∞−

τ− , 

 which simplifies to )()(5
4

4

tdh
t

t
i δ=ττ∫

+

−

, 

 which is expressed as )()(5)(5

4 Substitute

4

4 Substitute

4

tdhdh
t

i

t

i δ=ττ−ττ

+τ=α

−

∞−
−τ=α

+

∞−
∫∫



, 

 or, )()4(5)4(5 tdhdh
t

i

t

i δ=α−α−α+α ∫∫
∞−∞−

 

 Taking the derivative of both sides of the equation with respect to t, we obtain 

  ( ))()4(5)4(5 tthth dt
d

ii δ=−−+ .  

 which can be expressed as 

  ( )∑
∞

=
−−δ=

0
)84()(5

m
dt
d

i mtth . 

(vi) System (vi) will be invertible if there exists an impulse response 6 ( )ih t  such that 
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  )()(6)(6 tthth i δ=∗ . 

 Substituting the value of h6(t), we obtain 

  )()()(6 )(2 tdtueh t
i δ=ττ−τ∫

∞

∞−

τ−− , 

 which simplifies to )()(6 22 tdehe
t

i
t δ=ττ∫

∞−

τ−  

 or, t
t

i etdeh 22 )()(6 δ=ττ∫
∞−

τ . 

 Taking the derivative of both sides of the equation with respect to t, we obtain 

  ( ) ( ) t
dt
dtt

dt
dt

i etteeteth 2222 )(2)()()(6 δ+δ=δ=  

 or, ( ) )(2)()(6 ttth dt
d

i δ+δ= . ▌ 

  

( )

π
=

ω
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ω
×⎟

⎠
⎞⎜

⎝
⎛−+

ω
ω×⎟

⎠
⎞⎜

⎝
⎛−

ω
−×−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ω
ω−×⎟

⎠
⎞⎜

⎝
⎛−−

ω
ω−×⎟

⎠
⎞⎜

⎝
⎛ −=

ω⎟
⎠
⎞⎜

⎝
⎛ −= ∫

nTn

nTn
Tn

TnT

n
tn

Tn
tn

T
t

T

dttn
T
t

T
b

T

T

n

12

)(
)0sin(1

)(
)sin(1

)(
1102

)(
)sin(1

)(
)cos(12

)sin(12

0

2
0

2
0

0

0

0
2

0

0

0

0

0
0

 

 (e) By inspection, we note that the time period T0 = 2T, which implies that the fundamental frequency 
ω0 = π/T.  

 Using Eq. (4.30), the CTFS coefficient T0 is given by 

  ( ) ( )

[ ]

2

0
0 0 0 0

0

2 2 2 4

2 4 2 4 2 2 2/

1 1 1 1

11 1 1 1 1 1 1

( ) 1 0.5sin sin

cos( ) cos( ) cos(0)

T T T T
t t
T T

Tt
T

T T T T

T T

a x t dt dt dt dtπ π

π
π π ππ

ππ −

⎡ ⎤= = − = −⎣ ⎦

= + × = + − = − =⎡ ⎤⎣ ⎦

∫ ∫ ∫ ∫  

 Using Eq. (4.31), the CTFS cosine coefficients an’s, for (n ≠ 0), are given by 

  an =
2
2T 1− 0.5sin π t

T( )⎡⎣ ⎤⎦cos(nω0t)dt
0

T

∫ = 1T cos(nω0t)dt
0

T

∫
=A

  
− 1
2T sin π t

T( )cos(nω0t)dt
0

T

∫
=B

  

 

 where Integrals A and B are simplified as 

  [ ] [ ] [ ]0 000
1 1 1sin( ) sin( ) 0 sin( ) 0 0T

n nn TA n t n T nπ πω ω ω π= = − = − =  

 and 



   Assignment 2  CSE3451: Signals and Systems 
       

11 

  

( ) ( ) ( ) ( )

[ ]
[ ]

0
0 0 0

0 0

2 2 4

4 4( 1)/ ( 1)/

4 ( 1)

1 1 1

1 1 1 1

1 1

sin cos( ) sin cos sin ( 1) sin ( 1)

cos ( 1) cos ( 1)                         for  1

1 cos ( 1)

T T T
t t n t t t
T T T T T

T Tt t
T T

T T T

T Tn T n T

n

B n t dt dt n n dt

n n n

n

π π π π π

π π
π π

π

ω

π
+ −

+

−

⎡ ⎤= = = + − −⎣ ⎦

= × + + × − ≠⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= − + −

∫ ∫ ∫

[ ]

2

4 ( 1)

4 ( 1) 4 ( 1) ( 1)
12 2

1 cos ( 1)

0 10 1
n

n n n

n

n oddn odd

n evenn even

π

π π π

π−

+ − −

− −

≠ =≠ = ⎧⎧⎪ ⎪= =⎨ ⎨− =− =⎪ ⎪⎩ ⎩

 

 For [ ]2 2
0

0
4 4 82 /
1 1 1 11,  sin cos 1 cos2 0
T

Tt t
T TT T Tn B dtπ π

ππ π−= = = × = − =⎡ ⎤⎣ ⎦∫ . 

 In other words,  
2( 1)
1

0

n

n odd
B

n evenπ −

=⎧⎪= ⎨− =⎪⎩
 

 which implies that 

  
2( 1)
1

0
n

n

n odd
a A B

n evenπ −

=⎧⎪= − = ⎨ =⎪⎩
 

 Using Eq. (4.32), the CTFS sine coefficients bn’s are given by 

  ( ) ( )0 0 0
0 0 0

2 2
2 1 11 0.5sin sin( ) sin( ) sin sin( )
T T T

t t
n T T

C D

TT Tb n t dt n t dt n t dtπ πω ω ω

= =

⎡ ⎤= − = −⎣ ⎦∫ ∫ ∫
1 44 2 4 43 1 4 4 44 2 4 4 4 43

 

 where Integrals C and D are simplified as 

  [ ] [ ] [ ]0 000
1 1 1

2

0
cos( ) cos( ) cos(0) 1 cos( )T

n nn T
n

n even
C n t n T n

n oddπ πω
π

ω ω π
=⎧⎪= − = − + = − = ⎨
=⎪⎩

 

 and 

  

( ) ( ) ( )

[ ]
[ ]

0 0

0 0

2 4

4 4( 1)/ ( 1)/

4 ( 1) 4 ( 1)

1 1

1 1 1 1

1 1

sin sin cos ( 1) cos ( 1)

sin ( 1) sin ( 1)                         for  1

sin ( 1) sin(0) sin ( 1) sin

T T
t n t t t
T T T T

T Tt t
T T

T T

T Tn T n T

n n

D dt n n dt

n n n

n n

π π π π

π π
π π

π ππ π
− +

− +

⎡ ⎤= = − − +⎣ ⎦

= × − − × + ≠⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= − − − + −

∫ ∫

[ ]
[ ]

(0)

0                                                                                                                  for  1n= ≠

 

 For (n = 1),  

  ( ) ( )2 2 2
0

0 0 0

2 4 4 44 2 /
1 1 1 1 1sin 1 cos sin
T T

Tt t t
T T TT T T TD dt dtπ π π

π
=

×

⎛ ⎞
⎜ ⎟⎡ ⎤= = − = − =⎡ ⎤⎣ ⎦⎣ ⎦ ⎜ ⎟
⎝ ⎠

∫ ∫ 14 2 43
. 

 In other words,  
1
4 1

0 1

n
D

n

=⎧⎪= ⎨
>⎪⎩

. 
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 Therefore,  
4

2 1

2

0                     

               1

          1 .
n

n

n even

b C D n

n odd
π

π

=⎧
⎪⎪= − = − =⎨
⎪

≠ =⎪⎩

 ▌ 

( )
( )
2

1 1
2

1
8

1
2 ( 1)

1

1

1                     0

              1

            0

              1 .

n

n

jn

n

j n
D

n even

n odd

π

π

π

π

−

⎧ − =
⎪
± − = ±⎪⎪= ⎨

≠ =⎪
⎪ ± ≠ =⎪⎩

 


