Instructors Solutions to Assignment 2

Problem 3.2

(1)
(a)

P()+4p()+8y(t) = x(t)+x(¢) with x(£)=e*'u(t),»(0)=0, and (0)=0.

Particular solution: The particular solution for input x(¢) = exp(—4£)u(¢) is of the form

y,(0) = Ke™"u(1).

Substituting the particular solution in the differential equation for system (i) and solving the

resulting equation gives K = —3/8.

(b) Homogeneous solution: The characteristic equation of the LTIC system (i) is

(c)

(iii)

(a)

s*+4s5+8=0,
which has roots at s =—2 £ ;2. The zero-input response is given by
y,(t) = Ae™ cos(2t) + Be ' sin(2t)

for ¢t > 0, with 4 and B being constants.

Overall response of the system: The overall response of the system is obtained by summing up the
above two responses, and use initial conditions to derive A and B, and it is given by

=3 (e‘” cos(2f)—e  sin(2t)—e ¥ )u(t) .

FO+29(1)+ y(O)=5(t) with x(r)=[ cos() +sin(21) u(r), y(0)=3, and  H(0) =1.

Particular solution: The particular solution for input x(¢) = [cos(¢) + sin(#)]u(z) is of the form
y,t) = K, cos(t) + K, sin(¢) + K cos(2¢) + K, sin(2¢).
Substituting the particular solution in the differential equation for system (iii) and solving the
resulting equation gives
(— K cos(t) — K, sin(¢) —4K; cos(2t) — 4K, sin(2t)) + 2(— K, sin(t) + K, cos(t) — 2K sin(2t)
+2K cos(21))+1(K cos(t) + K, sin(t) + K5 cos(2t) + K, sin(2¢)) = —cos(¢) — 4sin(2¢)
Collecting the coefficients of the cosine and sine terms, we get

(- K, +2K, + K| +1)cos(t) + (=K, —2K; + K, )sin(¢) +
(4K, +4K, + K3 )cos(2t) +(-4K, —4K; + K, +4)sin(21) =0

which gives K; =0, K, =—0.5, K3 =0.64, and K4 = 0.48.

(b) Homogeneous solution: The characteristic equation of the LTIC system (iii) is
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s?+2s+1=0,

which has roots at s = —1, —1. The zero-input response is given by

YVzi (t)

for ¢t > 0, with 4 and B being constants.

(c)

=Ae”" + Bte™

Overall response of the system: The overall response of the system is obtained by summing up the

above two responses, and use initial conditions to determine A and B, it is given by

2(0) = Be™ + 47 Ju(r) + (- 0.64¢™ — 1.1t —0.5sin(r) +0.64 cos(2r) +0.48sin(21) u(r)

Problem 3.5
(i1)) The output y(¢) is given by

oo

() =u(=0#u(-n= |

—o0

The output y(7) is given by

0 0

0
ym=JﬁU—ﬂm=_pu—nm ﬁa<m={4 if(1<0)~

t

0
w4wm—gﬁ=J¢u—nm.

—oo

if (¢ > 0)
0 ife20)__,

The aforementioned convolution can also be computed graphically.

(iv) The output y(¢) is given by

)

0

y@):e”uc4)*e4%4n==je“ucqyr““”u@-uodr=e4fje“u@—ryh.

—o0

Solving for the two cases (¢ > 0) and (¢ < 0),
0 e

() = e J‘esru(t —T)dt=
e o

Therefore, the output y(¢) is given by

—oo

we get
j
3t 5t
edt (t<0) Y
g z{ge (t<0)
0 1 -3t
—e t>0).
”jé%h t>0) U ¢=0)

—oo

y(6) =1 u(=t)+ e u().

Problem 3.6

(ii) Using the graphical approach, the convolution of x(#) with z(¢) is shown in Fig. S3.6.2, where we
consider six different cases for different values of ¢.
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(a) Waveform for z(t) (b) Waveform for x(7) (c) Waveform for x(—7)

x(t-1) 2(T) x(t-1)
1 1 1 2(T) x(t-1)
T I | T
=2 t-1 t t=2| t-1 [ ] 0 1 1 y
-2 =1 -1 ¢ 0 1
-1 -1 1

(f) Overlap btw z(t) and x(+—7) for
(-1=<t<0)

NECRC NECRC lmr)
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(d) Waveform for x(#—1) (e) Overlap btw z(t) and x(#—7) for (+<-1)

1
t=2-1|t-1}/|0 ¢ i -1 -2, =11 ¢ -1 t=2| it—l t
Ff 1 -1

(i) Overlap btw z(t) and x(z—7) for
(2<1<3)

(g) Overlap btw z(t) and x(¢—7) for

(0<t<1) (h) Overlap btw z(t) and x(¢—7) for (1<t<2)

o
o

x(t)*z(t)

y2(t)
\
/

0.5
-1 0 1 2 3

(j) Convolution output y,(¢)
Fig. S3.6.2: Convolution of x(¢) with z(¢) in Problem 3.6(ii).

Case I (# <-1): Since there is no overlap, y,(¢)=0.

t
Case I (-1 << 0): yz(t)=J1.TdT=%—%.
-1

t—1 t
()= J(—l).TdT+ Jlxdﬂ:
CasellI (0<¢<1): he) o)

_ (@D 1 FER G R I 1
- [ 2 2)"'(2 2 )_ 2+2t 2°
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Y, (1) = tf (-D.7dt+ jl.’L’dT

t—1

— ( 1)2 ( 2)2 ( 1)2 — 2 3
( t2 t2 ) (é t ) t2 2

LSS}

1
2
Case V (2 <1<3): y,(f) = j(—l).rdr:%—%=§—zt+g.
-2

Case VI (¢ > 4): Since there is no overlap, y,(¢) =0.

Combining all the cases, the result of the convolution y,(#) = x(¢) * z(¢) is given by

£-1 (-1=1<0)

—L+2-1 (0<i<))

nO=y -L+3  (1<1<2)
t* 3

L-2+3  (251<3)

0 elsewhere.

The output is y,(¢) plotted in Fig. S3.6.2(j).

(iv) Using the graphical approach, the convolution of x(¢) with v(¢) is shown in Fig. 3.6.4, where we
consider six different cases for different values of ¢.

@ @ L‘»x(t'[)
&2 2t

(a) Waveform for v(1) (b) Waveform for x(t) (c) Waveform for x(¢—7)

1 w(T) x(t-1) 1 w(T) x(t-1) ’ w(T) x(t-1)

AN N A

-2 -1 t -1 1 t=2| -1 g ¢ 1 -2 o1

(d) Overlap btw v(t) and x(#—7) for (¢<<—1) (e) Overlap btw v(t) and x(¢+—7) for (—1<¢<0) (f) Overlap btw v(t) and x(z—7) for (0<t<1)

NEGEGY! |r@eo Kn

2| ] 1 ¢ 1 12| 1:-1 t 1 12| =1 t
L -1 -1

(g) Overlap btw v(1) and x(#—1) for (1<¢<2) (h) Overlap btw v(t) and x(#—7) for (2<t<3) (1) Overlap btw v(t) and x(¢—7) for (£>3)
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0.5

y4(t) = v(t)*v(t)
o

0.5
-1 0 1 2 3

Iy

(j) Convolution output y,(¢)
Fig. S3.6.4: Convolution of x(¢) with v(¢) in Problem 3.6(iv).

Case I (# <-1): Since there is no overlap, y,(¢)=0.

Case II (=1 <£<0): yu(f)= jle”d —%( —e_z)
-1

y4(t) = j (~1).e*du+ J’ 1.e2du+ j e 2dn
-1 t—1

Case III (0<¢< 1): - _%(ez(t—n _e2 )+%(1_ez<z—1))+%(1_e-zt)
—2tD 4 %e—z +1- %e‘Z’,
0 -1
y4(t) = I( 1).e**dt+ j (~1).e ¥ dr+ j le 2 dn
-2 -1
Case IV (1 <t<2): = _% (1 — 22 )+ % (6—20—1) _ 1)+ (__12) (e—2 _ e—Z(t—l))
_1,2(t-2) | -2, =2(t-1)
=5e —1-Je " +e .
1
Case V (2<t<3): yu(t) = J.(—l).e_z""d'c =%(e—2 _e—Z(t—Z))'

-2
Case VI (¢ > 4): Since there is no overlap, y,(¢) = 0.

Combining all the cases, the result of the convolution y, (¢) = x(¢)*v(¢) is given by
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%621_%6—2 (-1<t<0)
_ 2D +%e—2 +1_%e—2f (0<r<1)
ya0)=41207D 112 420D (1< <)

2
el - %[20_2) (2<t<3)

0 elsewhere.

N [—

The output is y4(¢) plotted in Fig. S3.6.4(j).

Problem 3.12

(i)  System £1(¢) is NOT memoryless since A1(¢) # 0 for ¢ # 0.
System £1(¢) is causal since 41(f) = 0 for ¢ < 0.
System £1(¢) is BIBO stable since

0 | hl(t) | dt = f 5(t)dt+m e ut)dt =1+ —te™ ) =§<oo.
° 5

(i1))  System 42(¢) is NOT memoryless since 43(¢) # 0 for ¢ # 0.
System h2(¢) is causal since 42(¢) = 0 for ¢ < 0.
System 42(f) is BIBO stable since

oo oo oo
oo

1
h2(t) | dt = | e 'u(t)dt = |e'dt =| —Le™ | ==<oo.
i|<)|_£(>£ [-4e™] =3
(ii1)) System 43(¢) is NOT memoryless since 43(¢) # 0 for ¢ # 0.
System /3(¢) is causal since 43(¢) = 0 for ¢ < 0.
System 43(¢) is BIBO stable since

oo oo

j | h3(t) | dt = j e sin(2ne)u(t)dt =je—5’ sin(27t)dt < oo.
oo —oo 0

(iv) System 44(¢) is NOT memoryless since h4(¢) # 0 for ¢ # 0.
System £4(¢) is NOT causal since 24(f) # 0 for ¢ < 0.
System £4(¢) is BIBO stable since

T| ha(t) | dt = ])-eZIdt+]ie_2tdt+ j.ldt =3 < oo.

—oo —oo 0 -1

(v)  System 45(¢) is NOT memoryless since 45(¢) # 0 for ¢ # 0.
System /5(¢) is NOT causal since 45(f) # 0 for ¢ < 0.
System £5(¢) is BIBO stable since

4

oo

12

j|h5(t)|dt= jzdt: .

—oo —4
(vi) System 46(f) is NOT memoryless since 46(¢) # 0 for ¢ # 0.

System £6(¢) is NOT causal since 46(f) # 0 for ¢ < 0.
System £6(¢) is NOT BIBO stable since

=16<co.

-4
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j | h6(t) | dt = j| sin(10¢) | dt =

—o0

Consider the bounded input signal sin(10¢). If this signal is applied to the system, the output can
be calculated as:

y(t)= T x(D)h(t—71)d7 = T sin(107)sin(10¢ —107)dt

The output at /=0 is given by,

»(0)= [ sin(107)sin(-107)d7 =~ [ sin’(107)dz = -1 [ (1-cos(207))d7
=1 [dr+1 ] cos(207)dT =0

_

=oo = finite value

It is observed that the output becomes unbounded even if the input is always bounded. This is
because the system is not BIBO stable.

(vil) System 47(¢) is NOT memoryless since A7(¢) # 0 for ¢ # 0.
System h7(¢) is causal since 47(¢t) = 0 for ¢ < 0.
System £7(f) is NOT BIBO stable since

oo

J. | W7(t)| dt = J.cos(St)dt = oo
—e 0

Consider the bounded input signal cos(5¢). If this signal is applied to the system, the output can be
calculated as:

y(t)= T x(t—1)h(r)dt = T cos(5¢t —57)cos(5T)u(7)dt = ]:cos(St —57)cos(57)dt-

The output at /=0 is given by,

y(0)= Jcos(—ST) cos(57)dt = Tcos2 (57)dt = %]ﬁ 1+ cos(lOT)

= %Jdr+%fcos(101')dr = oo
0

— Lf—/

=00 = finite value

It is observed that the output becomes unbounded at /=0 even if the input is always bounded. This
proves that the system is not BIBO stable.

(viii) System 48(¢) is NOT memoryless since 48(¢) # 0 for ¢ # 0.
System £8(¢) is NOT causal since A8(f) # 0 for ¢ < 0.
System £8(¢) is BIBO stable since
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oo

[ 1180)| dt = T 0.95"dt = 2]00.95%1; = 2Te”“(°'95)dt . L[e“nw-%)]:
—co 0 0

o In(0.95)
=L[O—l]=—L=39 oo
In(0.95) In(0.95)
(ix) System 49(¢) is NOT memoryless since 48(¢) # 0 for ¢ # 0.
System /49(¢) is NOT causal since 48(¢) = 0 for ¢ < 0.
System £8(¢) is BIBO stable since
(o] 1
J.|h9(t)|dt:J.1dt=2<oo. |

oo -1

Problem 3.14
(i)  System (i) is invertible with the impulse response /#1,(¢) of its inverse system given by
hl;(6) =1 8(1 +2).
(ii)  System (ii) will be invertible if there exists an impulse response A2 (¢) such that
h2(t)* h2;(t) = 8(1).
Substituting the value of 42(f), we get
h2;(t)+h2;(t+2)=08(¢)
which simplifies to h2;(t)=08(t—2)—h2;(t-2).
Substituting the value of 42;(f —2) = 8(t —4) — h2,(t —4) in the earlier expression gives
h2,;(t)=08(t—-2)—0(t—4)+ h2,(t—4).
Iterating the above procedure yields,

h2,(1) = i(—l)’”“ 8(t—2m).

m=1
Therefore, the system is invertible with the impulse response of the inverse system given above.
(iii) System (iii) will be invertible if there exists an impulse response /3,(¢) such that
h3(t) = h3,;(¢) = 8(¢).
Substituting the value of 43(¢), we get
H3;(t+1)+h3;(t—1)=03(¢)

which simplifies to h3;(t) =0(t—1)—h3,(t—2).
Substituting the value of /43;(t —2) = 8(¢t —3) — h3,(t—4) in the earlier expression yields

h3;(t)=0(t—1)—-8(t—3)+ h3,(t—4).

Iterating the above procedure yields,



(iv)

)

(vi)
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h3,(f) = i(—l)’"“ 8t +1-2m).

m=1

System (iv) will be invertible if there exists an impulse response /4. (¢) such that
ha(t) = ha,(t) = 8(¢) .-

Substituting the value of 44(f), we get

j ha  (Du(t — Tt = 8(7)

t
which simplifies to jh4 (Ddt=8(7).

Differentiating both sides of the above expression with respect to ¢, we obtain
ha, () =4 (8(1)).
In other words, system (iv) is an integrator. As expected, its inverse system is a differentiator.
System (v) will be invertible if there exists an impulse response /5,(¢) such that
h5(t) % h5,(t) = 8(¢).
Substituting the value of 45(¢), we obtain

j 1S, (Drect(55)dt = 8(1),

—o0

t+4
which simplifies to jhs,.(r)dr =8(1),
-4
t+4 t—4
which is expressed as JhSi(r)dr - JhSl-(t)dr =0(1),

—o0 —o0

Substitute a=1—4  Substitute o.=1+4

or, j 13, (ou+4)dou— J.hSi(oc—4)doc 0

—oo —oo

Taking the derivative of both sides of the equation with respect to ¢, we obtain
h5,(t+4)—h5,(t —4)="(3(1)).

which can be expressed as
hs;(6)="Y L (5(t—4—-8m)).
m=0

System (vi) will be invertible if there exists an impulse response /6,(¢) such that
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h6(t) * h6,(£) = 8(1).

Substituting the value of 46(¢), we obtain

j 16, (v)e 2 Ou(t —t)de = (1),

—o0

t
which simplifies to e J.h6,- (1)e*"dt = 8(¢)

—oo

t
or, j 16, (0> dt = 8(t)e>.

—o0

Taking the derivative of both sides of the equation with respect to ¢, we obtain
16, (0)” =L (8(0)e™ )= & < (5(0))+ 28(1)e™

or, 16, (1) =% (8(¢))+28(¢).- i

0
_ 2 l—i o« —cos(nayt) (1 o —sin(nwyt) g
TIU T)  (noy) ) (nay)? |
_2 0 (1)x -1 _(l}( sin(ny7T) (_j sin(0) }
T (nwy) \T (nwy)* (noy)?

nwyI nn

By inspection, we note that the time period 7, = 27, which implies that the fundamental frequency
Wy = m/T.

Using Eq. (4.30), the CTFS coefficient 7 is given by

=5 _[ x(t)dt =3

S

T r
[1 —0.5sin (”7)] dt= LTJ‘dt - %J.sin (%’)dt

0 0
=14 %xﬁ[cos(”?')]g =1+ Llcos(m)—cos(0)|=1-L =21

Using Eq. (4.31), the CTFS cosine coefficients a,’s, for (n # 0), are given by

T (%)cos(na) t)dt

= %JT.[I 0. 5s1n L ]cos(na) t)dt = chos(na) t)dt — 5= | si
0

O‘—-N}

=4 =B

where Integrals 4 and B are simplified as
. T
4= ﬁ[sm(nwot )], = L [sin(nw,T) - 0] = - [sin(nz) - 0] =0

and
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T T T
B =3 [sin(2)cos(nayt)dt = 5 [ sin (5)cos (%) dt = L [[ sin 2 (n +1) —sin (% (n 1)) |dt
0 0 0
_1 z 1
=ar X ﬂ(n+1)/T [COS 7+ 1)] I X 7= 1)/T [COS 7(n= 1)] [for n#1]
:W[I—COSﬂ(I’l"rl)]—m[l_C()Sﬂ'(l’l_l)]
0 l#n=o0dd 0 1#n=o0dd
12 2 _ - 1 _
Az(nl)  dzm(n-1) = even Tz Eeven
r T
For n=1, B :%J.smﬂdt = Lx>=1-] cos ] =& [1-cos27]=0-
0
0 n=odd
In other words, B=
——1 _ yp=cven
r(n*-1)

which implies that

n 1
n=even

0 n=odd
a =A-B=
m(n*-1)

Using Eq. (4.32), the CTFS sine coefficients b,’s are given by

T T
[1 0.5sin (”7)] sin(naw,t)dt = %J.sin(n(oot)dt I ’" s1n(na)0t)dt
1442 443 44244448
=C

—2
b, =55

S —y

where Integrals C and D are simplified as

[ ] [ ] [ ] 0 n=even
C= cos(nwyt)| = cos(na,T) +cos(0)] = - [1 - cos(nxr
nwOT ( 0) ( 0 ) () ( ) % = odd
and
T T
D= %J 1n(”7)sm(””’)dt = %J.[cos”?’(n - 1)—cos(”7’(n + 1))]dt
0 0
=% 2T 1)/T [sin % (n— 1)] 1 ﬁ(n+1)/T [sin2 (n+1)] [for n#1]
47[(” ) [sinz(n—1)—sin(0)] - 4”(n+1) [sinz(n+1)—sin(0)]
=0 [for n ;tl]
For(n=1)

T T
D=2]7jSin2 (5)dt = 41T J.[I_COS(L/)]‘” = %_ 4T><;7Z/T ) 22;[4’1 . :%'
0 0

=0

o=
In other words, D= {4 =
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Therefore, b=C-D= %_%
2

1#n=o0dd.
n=0
n==%1
0#n=even

tl1#n=odd.



