Instructors Solutions to Assignment 3

Problem 4.6

(a) By inspection, we note that the time period 7, = 27, which implies that the fundamental frequency
0y =1.

Since the CTFS coefficient a, represents the average value of the signal, therefore, ay = 3/2.

Using Eq. (4.31), the CTFS cosine coefficients a,’s, for (n # 0), are given by
Ty V3 V3

a, =% [x1(t)cos(nayt)dt = L [3cos(nayt)dt = L [3cos(nt)dr
0 0 0

=2 [sin(mn)]] =% [sin(nr)-0]=0

Using Eq. (4.32), the CTFS sine coefficients b,’s are given by
Ty V3

b, =% [xl()sin(nay)d = L [3sin(nt)de = 2 [~cos(nt)]} =2 [~cos(n) +cos(0)] == 1-(-1)"]
0 0

_{,16” n=odd

0 n=even

(c) By inspection, we note that the time period 7, = 7, which implies that the fundamental frequency ®,
=2mn/T.

Since the CTFS coefficient a, represents the average value of the signal, therefore, ao = 1/2.
Since the function [x3(¢) —0.5] is odd, therefore, the CTFS cosine coefficients a, = 0, for (n # 0).
Using Eq. (4.32), the CTFS sine coefficients b,’s are given by

=£]. l—i sin(nwgyt)dt
el T 0
3 —(—;)x—- ]
0 (nwg) 0

:2 0—(1))( -1 _ l XSin(I’l(DOT) 4L 51n(0)

r (nwy) T (n(J)O)2 (”030)
_2 1

nwyT o

(e) By inspection, we note that the time period 7, = 27, which implies that the fundamental frequency
Wy = m/T.

Using Eq. (4.30), the CTFS coefficient 7 is given by

=5 _[ x(t)dt =3

S

[1-0.5sin (%) ]dr = %Tdf —%jsin (=) dt
0 0

=14 xeos(2)] =1+ L [cos(m) - cos(0)] = — L = 2=
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Using Eq. (4.31), the CTFS cosine coefficients a,’s, for (n # 0), are given by

_2
a, =727

v._.s;

,
[1 0.5sin (%)]cos(na)ot)dt = %J.cos(na)ot)dt ’" cos(na) t)dt
1%442 4 43 44244443

=4 =B

S —_—

where Integrals 4 and B are simplified as

A= nw 7[sin(nayt )]Z L [sin(new,T) - 0] = 5L [sin(nz) - 0] =0
and
T T T
B =3 [sin(2)cos(nayt)dt = 5 [ sin (5)cos (22)dt = L [[ sin 2 (n +1) —sin (% (n 1)) |d
0 0 o
=Lx W[cosﬂ(n + 1):|0 2% e 1)/T [cos 2 (n— 1)] [for n#1]
47r(n+1) [1-cosz(n+1)]- m[l —cosz(n—1)]
0 1#n=o0dd 0 1#n=odd
m_ﬁ n=even —m n=even
T T
F()r n:LB:%J.SH'IMdt_i 2”/T[COSZ7L'[] é[l_COSQ,ﬂ']:O
0
0 n=odd
In other words, B=
_+ n=even
m(n*~1)

which implies that

0 n=odd
a =A-B= |

Zoe =even

Using Eq. (4.32), the CTFS sine coefficients b,’s are given by

O'—r\!

bn:%j[l 0.5sin(2) |sin(ne,)dt = 3 j sin(nas,1)dt - 54 [ sin(2)sin(nas 1) dr
0

=C =D
where Integrals C and D are simplified as

0 n=even

[- cos(na)ot)] = L[~ cos(n,T) + cos(0)] = 31 [1 - cos(n7) ]| = {2 dd
= p=o0

nrw

C=

nwOT

and
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T T
D=3 [sin(&)sin (22) dt = & [[cos & (n—1)— cos (% (n +1)) |t
0 0

=% = 1)/T[sm o (n— 1)} > ,[(,,H)/T[Sln (n+1)] [for n=1]

47[(” ) [sinz(n—1)—sin(0)] - 4”(n+1) [sinz(n+1)—sin(0)]

=0 [for n#1]

For(n=1),

D =%]‘sin2 (’%)dt =%T[l—cos(%)]dt = %—74”%”” [sin%]g =%-
0 0 [ ——

=0

1o,
In other words, p=1* =
0 n>1
0 n=even
Therefore, b=C-D= l_% n=1
n T
% 1#n=o0dd

Problem 4.11

(a) By inspection, we note that the time period 7, = 27, which implies that the fundamental frequency

o = 1. Using Eq. (4.44), the DTFS coefficients D,’s are given by

1 0/2 i , n= 0
D,=— [x()e " dt= js dgr=1 ( ’ )
1y 07 o l—e n#0.
3 —
3 5 n=0
or, D, =— (1 -(=1" )= 0 evenn,n#0.
j2nm
= oddn
Jjnm
The magnitude and phase spectra are given by
%, n=0
Magnitude Spectrum: |Dn| =<0, evennn#0.
% , odd n
0, even n
Phase Spectrum: <D, =4- %, oddn,n>0

%, odd n,n<0.

The magnitude and phase spectra are shown in row 1 of the subplots included in Fig. S4.11.

(c) By inspection, we note that the time period 7, = T, which implies that the fundamental frequency

o = 27/T. Using Eq. (4.44), the DTFS coefficients D,’s are given by
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X
[N
Il
(e}

1
=5 n

~N|—

T T
D, = %jx(t)e‘f”‘”ﬂ’dz = %J(l Lot gy = 'T[
0 0 e " dt n#0.
0

For (n # 0), the DTFS coefficients are given by

{ —jnw, — jno, T
Dn=%J.(l—%)€_j"w°tdt:|:(l—%)e_./—mt_(_%)e.j—wt2:| ’

0

which reduces to

D = -1 ! + ¢ el - ! = ! .
" T(=jnwg) T (=jnwg)* T (=jnwy)® |, j2nm

Combining the two cases, we get

1
= n=0
2,

D, = )
——  n#0.
Jj2nm

The magnitude and phase spectra are given by

%, n=0
Magnitude Spectrum: |Dn| =1
, n#0
Z‘n‘n’
0, n=0
Phase Spectrum: <D,=705m, n<0
-0.5m, n>0.

The magnitude and phase spectra are shown in row 3 of the subplots included in Fig. S4.11

(e)

By inspection, we note that the time period 7, = 2 T, which implies that the fundamental frequency
o =1/T. For (n = 0), the exponential DTFS coefficients is given by
0

[1-0.5sin(2)] dt—iTj LTT
0 0
1

% + 7 ”/T[cos(’”)] —% %[cos(ir) cos(O)]:%—%

2T
Dy = [ x()dt = 3

ﬂ\ﬁ
SY

O —

For (n = 0), the exponential DTFS coefficients is given by

_ 1
D, =57

O C—

1-0.5sin(2) [e™ "' dr = L e " dr—iT e " dt-
T 2T aT
0

0

=4 =B

Solving for Integrals A and B, we get
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=ar J e "dt = —12:11600T [e_jnwﬂt ]o —j%nﬂ [eijm B l:l - ﬂ#ﬂ[l B (_l)”]

and

T T T
_ L . ot z _ 1 /Tm _ 7,}7!{ 7//17!)‘ _ 1 J‘ 7/(/: 1) 7t *'I(/H*l)ﬂl
B—4TJ51n(T)e dt——jSTJ.[e e ——T dt
0 0 0

] r izt r it
__j8T|:-.i(n—l)7re BT for n #+1

= %[ﬁ(e_j(n_m - 1) =~ e (e_jml)” - 1)}
=gelon — i LD 1] = g [ D]
_47z(n 1)|:1+( 1) i|

For n =+ 1, Integral B reduces to

T . T
_ _ 1 —Jj2nt _ 1 T —j2nt _ _;T:_i
and Forn=-1, B—ﬂg—Tj[e T —l}dt—jS—T[—ﬁe T tl) =T
0
ijix n=%1
In other words, B=
pp ])[ +(- 1)”] otherwise

Combining, the above cases, the CTFS coefficients can be expressed as

- 2L n=0
D, =1 1= (D" Jmg n==1
[1 (_l)n] pp ]>[1+( )" ] otherwise
%(1_%) n=0
= mi(z ) n==1
[t o[- ] otherwise
%(1_%) n=0
mj(%—%) n=xl
2”(;2 D 0#n=even
j,%,, t1#n=o0dd

The expressions for the magnitude and phase spectra are given by
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1(1-1) n=0 [=0.3408 n=0
Magnitude Spectrum: | | _ s n=:l _)7 0.1933 n=tl
! o, O#n=even ~ 02322 0+ n=even
LI Hlzn=odd |=9318  tlzn=o0dd
0 n=even 0 n=even
Phase Spectrum:  Rp —! R(mj) n=#1 ={-2  n=odd,n>0

R(%) tl#n=o0dd |Z% n=o0dd,n<0
Jn 2

The magnitude and phase spectra are shown in in row 5 of the subplots included in Fig. S4.11.

Problem 4.13

In each case, we show that the exponential CTFS coefficients obtained directly from Eq. (4.44) are
identical to those obtained from the trigonometric CTFS coefficients.

(a) From the solution of Problem P4.6(a), we know that

6 =
a %,a—Oandb o N odd.
0 n=even
Using Eq. (4.45), the exponential CTFS coefficients for x1(¢) are given by
a, n=0 a, n=0
D,=1%(a,—jb,) n>0 =1-1jb, n>0 Q a,=a,=0]
L(a,+jb.,) n<0 1jb, n<0
3 n=0
> 3 n=0
0 n=even
— =<0 n=even
—j< n=odd,n >0
" - n=odd
—j= n=o0dd,n <0 i

(c) From the solution of Problem P4.6(c), we know that
ay=%, a,=0, and b,=-1

Using Eq. (4.45), the exponential CTFS coefficients for x3(¢) are given by

a, n=0 a, n=0
D,=1%(a,-jb,) n>0 =<—3jb, n>0 Q a,=a,=0]
$(a,+jb,)  n<0 7Jb., n<0
% n=0 1 n=0
=<—jst n>0 =]
2nw 2—j I’l?’—'O
—ja n<0 "

(e) From the solution of Problem P4.6(e), we know that
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n=odd

N|—

. 0
Ay =7"27>4,= 1
n(n*-1)

n=even
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0 n=even
,andbn: %—% n:l
2 1#n=o0dd

nrw

Using Eq. (4.45), the exponential CTFS coefficients for x5(¢) are given by

(n=0): D, =5
(n=1): Dy=1(a, - jb)=-
(n=-1):
_J
(n>1): D,=1(a,-jb,)= 1M
27(n-1)
{e5)
(n<-1): D,=3(a, +jb,)=1" |
27(n-1)
Combining the above results, we obtain
Hi-4)
D, = ijl (=)
27 (n*-1)
1
jnr

Problem 5.2

(a)

(b)

By definition,

T
X, () =j3e—f“”dz=3[;'—’°”]“ ——.i[e—f"”“ —1]:— 3

—joydy T jo
0

__3
Jjo

=31e /™ 2sinc(w/ 2).

By definition,

3 /OM2 (3 jsin(on/ 2)] = 6e /M2 [—Si“(‘z)’” 2 ]: 6e~/om'2 [L X

- L -
n=odd -7 n=odd
_ - 1 -
n=even |y .o n=even
- L -
n=odd -7 h=odd
_ - 1 -
n=even |y .o n=even
n=0
n=xl1

0#n=even

tl1#n=odd.

e—](mt/z [e—/um/z _ e](mt/Z]

JoO

2/

sin(wmw/2)
/2
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0.5T 15T
X(a))— J* 05 _jwtdt+ J‘ —ja)tdt_o 5|:e—mx:|0.5T +|:e—,fr.,:|1.5T
5 = Se e T Lo sy L {gsr
~0.5T 0.5T

_ _ 05 —j0Ssol _ j0Sel | _ 1 —-jl5el _ —j0.Sel
jw[e ¢ jo| € €

— 8 [-2sin(0.507)] -5 e/ [-2 jsin(0.50T)]

_ | 057 sin(0.50T) jorT | 057 « sin(0.507)
_|:05T>< [ :|+28 I:OST>< [ :I

=0.57T5inc (2221 ) + Te™/*"sinc (2221 ).
(c) By definition,
f i ~ joor e 7T
T R P [ PR
0

=[0‘(—%)< Joy }‘[(—}@ - ”( o7 }

S T S Y |
oT JO  oT JO  oT

T
For o = 0, X3(w):J(1—%)dt:[—%(l—%)2}T=0+%=%.
(d) By definition,

0 T
Xy(@)= [+l de+ [(1- L~ ar
-T 0

- jot —jor 0 —jot —Jjor r
:l:(l-f;)(ejw) (]1’)(‘3](0) :| +|:(1_%)(E—J_‘w)_(_%)(fjm)z:|0
[ W -0+ b [+ - -

2L _ 2x2sin’(0.507) _ 4 sin?(0.507) _ 050)T
T [1 - cos(@T)]= o'T =105 (050r) = Tsinc® (4321,

(e) By definition,
T

X (w)= _[[1 05s1n(”?)]e‘j‘”’dt:j Ot — OSJ.sm”? O dt

0
%/_/
=4 =B

We consider different cases for the above integral.
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Casel: (w=0)

oo
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,&anTxUﬁhzj[kﬂjﬁn@rcﬁ jw osjmngfz

—oo

=T+ 25 [cos(#)], =T+ [cos(m) —cos(0)| = T-L=T(1-})

/T

CaseIl: (0 #0, o #w/T):

A= [era= [T = o[ 1] =L 1-e ] [00]
0

T
5=03) 2= - josin(5) s eos( 5]
0

T

— _ 057 —jot xt pd
=—e jo sm( )+ cos(7)
%/_/

=0 at t=0,T

2-0’T? T

= —pe T g = e ]
Case III: (@ = 1/T):

B= OSJ.sml )e " dt = Osj[eﬂ—eﬂ}e"“’dtz"‘?].
0 0

T 2j

forw#0,£%

[ o /@ _ e’j(“”%”] dt

l
1
AN
)

m\

-

&
=
Q
I
S
S
o
z
=
=
Q
3.
S
{Q
~
[SY S
B
&
Il
(e}
|

Combining, the above results, the CTFT can be expressed as

T(1-1)
X.(0)= MD ewlm%i
T(-1)
={emy
Jal 1= = 1 e ]

Problem 5.4

(a)  The partial fraction expansion is given by

()

=

I+
~lN

=
otherwise
=0

w==

SN

otherwise
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(b)

(c)
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X(@=—" ol 2
2+ jo)(3+jo) 2+ jo) G+ jw)

Calculating the inverse CTFT, we obtain
x(t)=- e_ZIu(t) + Ze_3tu(t).
The partial fraction expansion is given by

1 0.5 -1 0.5
X,(w)= - ; —— = —t —t ;
(I+ jo)2+ jo)3+ jo) (1+jo) 2+ jo) G+ jo)

Calculating the inverse CTFT, we obtain
X, ()=0.5¢ " u(t) - e_ztu(t) + O.Se_3tu(t) .
The partial fraction expansion is given by
1 0.5 0 -1 -0.5
. . N2 . = . + . + . N2 + .
1+ jo)2+ jo) B+ jo) (+jo) 2+jo) 2+ jw)° G+jo)

X3 (0)=

Calculating the inverse CTFT, we obtain

x3(£) =0.5¢ " u(t) — te ' u(t) + 0.5 u(r). |

Problem 5.9

(a)

(b)

(c)

Applying the linearity property,
X, (0)= S{s +3cos(10r) —7e™* sin(3z)u(z)}= 53{1}+ 33 {cos(10)} - 73{e‘2’ sin(3t)u(t)}.
By selecting the appropriate CTFT pairs from Table 5.2, we get

21

X, (0)=108(c)3{1}+ 3n8(0—10) + 313(c0— 10) — @t +3t

Entry (8) of Table 5.2 provides the CTFT pair

CTFT )
sgn(?) %

Using the duality property, % T on sgn(—m),

1, CIFT .

or, > —jsgn(w).

Entry (7) of Table 5.2 provides the CTFT pair

e_4M CTFT 8
4+ jo

—4|¢=5| | CTFT 8 ,J50

Using the time shifting property, e o

Using the frequency differentiation property,

2 A4=5| , CTFT  , ~2 g° {e—ij 8 }
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—4|t-5 —j
or, 12 e CCTFT h00e /50 14 1ge /50 1
Hjo (4+jo)

(d)  Entry (17) of Table 5.2 provides the CTFT pair

3sinc(3t) =3 sin3m)  CTFT rect(6—°;t)

3mt
. _ e sin(5mt)  CTFT o
and 5sine(5t) =5—=_ rect(m)

Using the multiplication property
2, sin(3mt) _, sin(Swt) , CTFT 2 o o
X ——X— o [rect(a)* rect(m)]
sin(3n¢)sin(Smz) , CTFT
: z [rect(6—“7’c) & rect(%)],

T
2
sin(3z)sin(57) , CTET 57
or, 5= T[rect( 2 )% rect(loﬁ)]

or,

where * is the convolution operation.

(e) Entry (17) of Table 5.2 provides the CTFT pair

3sinc(3t) =3 Singu) CTFT rect(6—°;t)

. _ g sin(4mt)  CTFT ®
and 4sinc(4) =4—,_ rect(s—)
Using the time differentiation property,

sin(4mt) , CTFT .
%% . ( ]w)rect(%).

Using the convolution property

2 x sin3m) 1 4 sin(4nr) | CTFT g—[rect( )x ]wrect( )]

it T dt t
sin3m) , g sin(4m) , CTET [ ( ) ( )]
or, ; P 5 [rect{g )X Jjorect
sin(3nt) ,, 4 sin(4m)  CTFT . (&)
or, 4= — J2mrect{Z ). |

Problem 5.15

(a) Using the time scaling property, x (2;)%CTF T X( )

Using the frequency shifting property, e~/ x(2¢)«——"— 1 X (“’T”)

Substituting the value of X(®), we obtain
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\a)+5\ <
S{e/x(n) =1 1- lw+5|<3
0 elsewhere
2l —-11<w<-5
=q L0 -5<w<-1
0 elsewhere.

(b) Using the frequency differentiation property,

({2 3

do’ ’
2 CTFT 2
or, x(t) s X
dw

The CTFT of 7 x(¢) is given by
P )= L (A2 )]~ £ [rect(@)]= 1800+ 3) - (- 3)]=[8(0-3) - 8@+ 3)]

(c)  Express (f+ 5)% =t 54

Using the time differentiation property, the CTFT of 4 45 1s given by

CTFT X ().
Applying the frequency differentiation property to the above CTFT pair, gives
19— j L joX (@)]=-X(0) - 0%
The CTFT of (t + 5) is given by
3t +35) L }=—X (@) - 0L +5 joX ().

Substituting the value of X(w), we obtain

w

jsoll-2)-(1-22) o0<ws<3
3{e+5)L)=1 jsoll+2)-(1+22) -3<0<0
0 elsewhere.

b)

(d)  Using the time multiplication property,

x(t)- () e 5 [X (0)« X (o))

which implies that
Flxo) - x0}= % [7(g) - alg)}

(e)  Using the time convolution property,
Error! Objects cannot be created from editing field codes.,

which reduces to
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w}
1-= |(0| <3 1+ 9 _ 2o} <
Flx(0) # x(1)}= [ : _ e jof <3
0 elsewhere 0 elsewhere.
()  Using the time multiplication property,
x(t)- cos @yt T L X (@) * nd(@— @, ) + 5= X () * (0 + oy ).
or, x(t)~coswot&%X(w—mo)+%X(w+0)0)

Case I: For my = 3/2, we obtain
x(t)- cos(3t/2)&%X(m—%)+%X((D+%)‘

The two replicas overlap over (—3/2 < ® < 3/2), therefore,

1, o3/2 -9 -3
5 + = 5 <w< 5
1 —3<mw<3
3 2
F{x(t)cos(3t/2)}= 1, 03/2 3 o’
1, S<w<Z
2776 2 2
0 elsewhere

Case 1I: For my = 3, we obtain

x(t)- cos3t&>%X(w—3)+%X(m+ 3).

Since there is no overlap between the two shifted replicas,

_ |+3]

1-= lo+3]<3
thnm34=%1—@§i lo-3/<3
0 elsewhere.
1l <p<o
or, F{x(t)cos 3t}= %—@ 0<mw<6
0 elsewhere.

Case III: For my = 6, we obtain

x(t)- cos 6t&>%X(w—6)+%X(w+ 6).

Since there is no overlap between the two shifted replicas,

‘ ‘
‘(l)—6‘

1
F{x(t)cos 3t}= % 1

lo+6/<3
lo—6/<3

0 elsewhere.
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|+6]
6
6|

1
2
1
2

or, F{x(t)cos 3t}=

O\‘

0
Problem 5.20

CSE3451: Signals and Systems

-9<mw<3
3<m<9 i

elsewhere.

(a)

(b)

(c)

Calculating the CTFT of both sides and applying the time differentiation property, yields
(jo)’ Y(0)+ 5(jm)* Y(0)+ 11(jo)Y (o) + 6Y (o) = X (),
or, (o) +5(j0)* +11(jeo) + 6 (0)= X (),

H(w)= Y (o) _ 1

X(@) (jo) +5(0) +11(jo)+6

or,

The impulse response A(¢) can be obtained by calculating the inverse CTFT of H(®), which can be
expressed as

1 0.5 -1 0.5
H(w)= = + +
(I+jo)2+jo)3+ jo) 1+ jo) (2+j0) G+ jo)

Calculating the inverse CTFT, we obtain

h(t)=0.5¢ " u(r) — e > u(t) + 0.5¢ > u(r).
Calculating the CTFT of both sides and applying the time differential property, yields

(o)’ Y()+3(jo) (0)+2Y(0)= X (o),

o, (jo) +3(0)+ 2 (@)= X ().

H(w)— Y (o)) 1

X (joP +3(jo)+2

or,

The impulse response A(¢) can be obtained by calculating the inverse CTFT of H(®), which can be
expressed as

1 1 1

H(w)= = _
(o) +3(jo)+2 (+j0) 2+ jo)

Calculating the inverse CTFT, we obtain
h(t)=eut) — e > u(r).
Calculating the CTFT of both sides and applying the time differentiation property, yields
(o) ¥ (@)+2(/0)Y @)+ ¥ (0)= X ().

o, (o) +1(/0) + 1)/ ()= X (o).

or, H(w)= V(o) = !

X (o) +2(jo)+1
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The impulse response /4(f) can be obtained by calculating the inverse CTFT of H(w), which can be
expressed as

Ho = ——
TP

Calculating the inverse CTFT, we obtain

h(t)=te " u(t).
(d) Calculating the CTFT of both sides and applying the time differentiation property, yields

(jo) Y(0)+ 6(jo)Y (0)+8Y(0) = (jo)X (0)+ 4X (o),
or, () +6(jeo)+ 8)r ()= (joo) + 4)x (),

or w:Y(w): (jw)+4 _ 1
’ 10w (o) +6(jo)+8  2+jo

The impulse response A(f) can be obtained by calculating the inverse CTFT of H(w), which is given
by

h(t)=e > u(r).
(e) Calculating the CTFT of both sides and applying the time differential property, yields

(jo) Y(w)+8(jw)* Y (w)+19(jo)Y (0)+12Y(0) = X (),

or, (jo +8(j0)? +19(j0)+12)r (@)= X(0).

or o)= Y(co): 1
’ H(o) X)) (jo) +8(jo) +19(w)+12

The impulse response A(¢) can be obtained by calculating the inverse CTFT of H(®), which can be
expressed as

(jo) +8(jo) +19(jw)+12 (+j®) (G+jo) (4+ jo)

1 1/6 -1/2 1/3
)= + +

Calculating the inverse CTFT, we obtain

hO)=Leu(t)—Le M ut)+1e ™ u(). I

Problem 5.29
(a) In Example 3.6, it was shown that

y(t)=eu(t)* e_ztu(t) = [e_[ - e_Z’] u(t).
(b) From Table 5.2, the CTFT of x(¢) and /(¢) are obtained as

X =1l and  Ho)=y)

I+jw’ 2+jo "

The CTFT of the output is then given by
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(c)
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Y(w)=H(0)X(0)=+"=7=="-—5-

(+jo) (2+jo) ~— 1+jo T e

Calculating the inverse CTFT results in the output signal

v =l —e ¥ Juq.

_Y(o) . . ) . .
As H(w) = Yo = T’ the Fourier-domain input-output relationship can be expressed as

JoY(m)+2Y(m) = X ().

Calculating the inverse CTFT of both sides results in the following differential equation

Y _
7 +2y(t) =x(¢).

The output can be obtained by solving the differential equation with input x(7) = e "u(t)

and zero initial conditions »(07) = 0.
Zero-input Response: Due to zero initial condition, the zero-input response is y,i(¢) = 0.

Zero-state Response: The characteristics equation is given by (s + 2) = 0 resulting in a single pole at
s = —2. The homogenous component of the zero-state response is given by

yg ()= Ae™*.
Since the input x(¢) = exp(—f) u(?), the particular solution is of the form
yE(t)=Ke" for t20.
Inserting the particular solution in the differential equation results in K = 1. Therefore,
Yot =€ u(t).
The overall zero-state response is, therefore, given by
v, ()= Ae™ +e

for t > 0. To determine the value of 4, we insert the initial condition y(07) = 0 giving
A+1=0= A4=-1

or, A = —1. The zero state response is given by
y. ()= (ef' —e™ )u(t)
Total Response: By adding the zero-input and zero-state responses, the overall output is given by

YO = g+ y, () =(e" =™ Ju@).

It is observed that Methods (a) — (¢) yield the same result. I

Problem 5.31

(a)

The magnitude spectra of the two systems are calculated below
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_ V400+0® _
o)==
_J1 | 220
|H2 ((D) B {O elsewhere.

The magnitude spectra are plotted in Fig. S5.31). From Fig. S5.31(a), we observe that the
magnitude |H(®)| is 1 at all frequencies. Therefore, System H,(®) is an all pass filter.

From Fig. S5.31(b), we observe that the magnitude |H,(w)| is zero at frequencies below 20
radians/s. At frequencies above 20 radians/s, the magnitude is 1. Therefore, System H,(m) is a
highpass filter.

Hy(0) Hj ()
1 1

(a) (®)

Fig. S5.31: Magnitude Spectra for Problem 5.31.

(b) Calculating the inverse CTFT, the impulse response of the two systems is given by

h(t)=3" {% }= 3! {ﬁ }— 3711} =402 u(t) - 8(1).
hy(t)=3"{1-rect(2) } =37 {1} -3 { rect(2) } = 6() — L sinc(Z). i
Problem 5.32

The transfer functions for the three LTIC systems are given by

2
System (a): H((®)=——.
(@) (1+ j)?
System (b): H,(®) =nd(w)+ L
Jjo
System (c): Hiy(w)=-2+ > 1220

2+jco_ 2+ jo

The following Matlab code generates the magnitude and phase spectra of the three LTIC systems.

$MATLAB Program for Problem P5.32

%System (a)

clear; % clear the MATLAB environment
num _coeff = [2]; % NUM coeffs. in decreasing powers of s

denom coeff = [1 2 1]; % DEN coeffs. in decreasing powers of s
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o°

sys = tf(num coeff,denom coeff); specify the transfer function

figure (1)

o

bode (sys, {0.02,100}); grid; sketch the Bode plots
title('Bode Plot for System-1")

%System (b)

clear; % clear the MATLAB environment

num coeff = [1]; % NUM coeffs. in decreasing powers of s
denom_coeff = [1 0]; % DEN coeffs. in decreasing powers of s
sys = tf(num coeff,denom coeff); % specify the transfer function
figure (2)

oe

bode (sys, {0.02,100}); grid; sketch the Bode plots
title('Bode Plot for System-2"')

$System (vc)

clear; % clear the MATLAB environment

num coeff = [-2 1]; % NUM coeffs. in decreasing powers of s
denom_coeff = [1 2]; % DEN coeffs. in decreasing powers of s
sys = tf(num coeff,denom coeff); % specify the transfer function
figure (3)

o°

bode (sys, {0.02,100}); grid; sketch the Bode plots

title('Bode Plot for System-3')

The resulting Bode plots are shown in Fig. S5.32.
Calculating Output:
System (a): Using the modulation property, the output of system (a) is given by
Y (w)= ﬁxn[é(a)—l) +o(w+1)]= 27[((1+;1)2 S(w-1)+ = o(w+ 1))
=—jr[8(w-1)-S(w+1)].

Calculating the inverse CTFT, we obtain

»(¢)=sint.
System (b): Using the modulation property, the output of system (a) is given by
J

Y, (@)= [;za(w) +_—1a)}<7£[6(a)—1) +3(@+D)]=7[L8(@-1)+L S(w+1) ]
J

=—jr[d(w-1)-(w+1)].
Calculating the inverse CTFT, we obtain

Vo(t) =sint.
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Bode Plot for System-1
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Figure S5.32. Magnitude and phase spectra for systems in Problem 5.32.

System (c): Using the modulation property, the output of system (a) is given by
-2
2+ jw
=7[ 52 8(0-D)+ 52 5(w+1)]

=—jr[d(w-1)-S(w+1)].

Y,(w) = X7[S(@w-1)+(w+1)]

Calculating the inverse CTFT, we obtain
y3(¢) =sint.

To explain why the three systems produce the same output for input x(¢f) = cost, consider Eq. (5.77),
which for @y =1 is given by

COS(I) Hermitian Symmetric H () IH(1)|COS((DOt+<H(1)).
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In other words, the output for x(¢) = cos(¢) depends only on the magnitude and phase of the system at @ =
1. For the three systems, we note that

[H ()] = |Hy (O] =|H3 ()] =1
and
<H,()=H,(1)=H;()=-1.

Since the magnitudes and phases of the three systems at @ = 1 are the same, the three systems produce the
same output () =sint for x(¢) = cos(?). i



