Instructor Solutions for Assignment 4

Problem 6.1

Solution:

(a) By definition

$$
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t=\int_{-\infty}^{\infty} e^{-5 t} u(t) e^{-s t} d t+\int_{-\infty}^{\infty} e^{4 t} u(-t) e^{-s t} d t=\underbrace{\int_{0}^{\infty} e^{-(s+5) t} d t}_{I}+\underbrace{\int_{-\infty}^{0} e^{(4-s) t} d t}_{I I}
$$

Integral I reduces to
$I=\int_{0}^{\infty} e^{-(s+5) t} d t=\left.\frac{e^{-(s+5) t}}{-(s+5)}\right|_{0} ^{\infty}=\frac{-1}{(s+5)}[0-1]=\frac{1}{s+5} \quad$ provided $\operatorname{Re}\{(s+5)\}>0 \Rightarrow R O C R_{1}: \operatorname{Re}\{s\}>-5$ while integral II reduces to
$I I=\int_{-\infty}^{0} e^{(4-s) t} d t=\left.\frac{e^{(4-s) t}}{(4-s)}\right|_{-\infty} ^{0}=\frac{1}{(4-s)}[1-0]=\frac{-1}{s-4} \quad$ provided $\operatorname{Re}\{(4-s)\}>0 \Rightarrow R O C R_{1}: \operatorname{Re}\{s\}<4$.
The Laplace transform is therefore given by

$$
X(s)=I+I I=\frac{1}{s+5}-\frac{1}{s-4}=\frac{-9}{(s+5)(s-4)} \quad \text { with } R O C: R=R_{1} \operatorname{I} R_{2} \text { or } R:(-5<\operatorname{Re}\{s\}<4)
$$

(b) By definition

$$
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t=\int_{-\infty}^{\infty} e^{-3|t|} e^{-s t} d t=\int_{-\infty}^{0} e^{3 t} e^{-s t} d t+\int_{0}^{\infty} e^{-3 t} e^{-s t} d t=\underbrace{\int_{-\infty}^{0} e^{(3-s) t} d t}_{I}+\underbrace{\int_{0}^{\infty} e^{-(s+3) t} d t}_{I I}
$$

Integral I reduces to

$$
I=\int_{-\infty}^{0} e^{(3-s) t} d t=\left.\frac{e^{(3-s) t}}{(3-s)}\right|_{-\infty} ^{0}=\frac{1}{(3-s)}[1-0]=\frac{-1}{s-3} \quad \text { provided } \operatorname{Re}\{(3-s)\}>0 \Rightarrow R O C R_{1}: \operatorname{Re}\{s\}<3
$$

while integral II reduces to
$I I=\int_{0}^{\infty} e^{-(s+3) t} d t=\left.\frac{e^{-(s+3) t}}{-(s+3)}\right|_{0} ^{\infty}=\frac{-1}{(s+3)}[0-1]=\frac{1}{s+3} \quad$ provided $\operatorname{Re}\{(s+3)\}>0 \Rightarrow R O C R 1: \operatorname{Re}\{s\}>-3$

The Laplace transform is therefore given by
$X(s)=I+I I=\frac{1}{s+3}-\frac{1}{s-3}=\frac{-6}{s^{2}-9} \quad$ with $R O C: R=R_{1}$ I R_{2} or $R:(-3<\operatorname{Re}\{s\}<3)$.

Problem 6.3

Solution:

(a) Using partial fraction expansion and associating the ROC to individual terms, gives $X(s)=\frac{s^{2}+2 s+1}{(s+1)\left(s^{2}+5 s+6\right)}=\frac{(s+1)^{2}}{(s+1)(s+2)(s+3)}=\frac{s+1}{(s+2)(s+3)}=\underset{\substack{\text { ROC:Re }\{s\}>-2 \\\{+2}}{\frac{A}{\operatorname{ROC}: \operatorname{Re}\{s\}>-3}} \frac{B}{\{+3}$ where $A=\left[\frac{s+1}{s+3}\right]_{s=-2}=-1, \quad B=\left[\frac{s+1}{s+2}\right]_{s=-3}=2$

Taking the inverse transform of $X(s)$, gives

$$
x(t)=-e^{-2 t} u(t)+2 e^{-3 t} u(t)=\left(2 e^{-3 t}-e^{-2 t}\right) u(t)
$$

(b) Using partial fraction expansion and associating the ROC to individual terms, gives

$$
X(s)=\frac{s^{2}+2 s+1}{(s+1)\left(s^{2}+5 s+6\right)}=\frac{s+1}{(s+2)(s+3)}=\underset{\substack{\sum^{2} \\ \text { ROC: } \operatorname{Re}\{s\}<-2 \quad \\ \quad \operatorname{ROC}: \operatorname{Re}\{s\}<-3}}{\frac{B}{\{+3}}
$$

where constants A, and B were computed in part (a) as $A=-1$, and $B=2$.
Taking the inverse transform of $X(s)$, gives

$$
x(t)=\left(e^{-2 t}-2 e^{-3 t}\right) u(-t)
$$

Note that the same rational fraction for $X(s)$ gives different time domain representations if the associated ROC is changed.
(e) Using partial fraction expansion and associating the ROC to individual terms, gives

$$
X(s)=\frac{s^{2}+1}{s(s+1)\left(s^{2}+2 s+17\right)}=\underbrace{\frac{A}{s}}_{\text {ROC: } \operatorname{Re}\{s\}>0}+\underbrace{\frac{B}{(s+1)}}_{\text {ROC:Re}\{s\}>-1}+\underbrace{\frac{C s+D}{\left(s^{2}+2 s+17\right)}}_{\text {ROC:Re }\{s\}>\operatorname{Re}\{-1 \pm j 4\}}
$$

where

$$
\begin{aligned}
\quad A & =\left[\frac{s^{2}+1}{s(s+1)\left(s^{2}+2 s+17\right)} s\right]_{s=0}=\left[\frac{s^{2}+1}{(s+1)\left(s^{2}+2 s+17\right)}\right]_{s=0}=\frac{1}{17} \\
\text { and } B & =\left[\frac{s^{2}+1}{s(s+1)\left(s^{2}+2 s+17\right)}(s+1)\right]_{s=-1}=\left[\frac{s^{2}+1}{s\left(s^{2}+2 s+17\right)}\right]_{s=-1}=-\frac{1}{8} .
\end{aligned}
$$

To evaluate C and D, expand $X(s)$ as

$$
s^{2}+1=A(s+1)\left(s^{2}+2 s+17\right)+B s\left(s^{2}+2 s+17\right)+(C s+D) s(s+1)
$$

and compare the coefficients of s^{3} and s^{2}. We get
$0=A+B+C$
$1=3 A+2 B+C+D$
which has a solution $C=9 / 136$ and $\mathrm{D}=137 / 136$. The Laplace transform may be expressed as

$$
X(s)=\underbrace{\frac{1}{17 s}}_{\text {ROC:Re }\{s\}>0}-\underbrace{\frac{1}{8(s+1)}}_{\text {ROC:Re }\{s\}>-1}+\underbrace{\frac{9(s+1)}{136\left((s+1)^{2}+4^{2}\right)}}_{\operatorname{ROC}: \operatorname{Re}\{s\}>-1}+\underbrace{\frac{32 \times 4}{136\left((s+1)^{2}+4^{2}\right)}}_{\operatorname{ROC}: \operatorname{Re}\{s\}>-1}
$$

Taking the inverse transform of $X(s)$, gives

$$
x(t)=\frac{1}{17} u(t)-\frac{1}{8} e^{-t} u(t)+\frac{9}{136} e^{-t} \cos (4 t) u(t)+\frac{4}{17} e^{-t} \sin (4 t) u(t) .
$$

Problem 6.13

Solution:

(a) Calculating the Laplace transform of both sides, we get

$$
\left[s^{2} Y(s)-s \underset{=0}{y\left(0^{-}\right)-\left(0^{-}\right)}=0+3\left[s Y(s)-y\left(0_{=0}^{-}\right)\right]+2 Y(s)=1\right.
$$

which reduces to

$$
\begin{gathered}
\left(s^{2}+3 s+2\right) Y(s)=1 \\
Y(s)=\frac{1}{\left(s^{2}+3 s+2\right)}=\frac{1}{(s+1)(s+2)}=\frac{1}{s+1}-\frac{1}{s+2} .
\end{gathered}
$$

or,
Calculating the inverse Laplace transform, we get

$$
y(t)=e^{-t} u(t)-e^{-2 t} u(t)
$$

(c) Calculating the Laplace transform of both sides, we get

$$
\left[s^{2} Y(s)-s \underset{=1}{y\left(0^{-}\right)}-\underset{=1}{\left(0^{-}\right)}\right]+6\left[s Y(s)-\underset{=1}{y\left(0^{-}\right)}\right]+8 Y(s)=\frac{1}{(s+3)^{2}}
$$

which reduces to

$$
\left(s^{2}+6 s+8\right) Y(s)=\frac{1}{(s+3)^{2}}+(s+1+6)
$$

or,

$$
Y(s)=\frac{1}{(s+2)(s+3)^{2}(s+4)}+\frac{s+7}{(s+2)(s+4)} .
$$

Taking the partial fraction expansion of the two terms separately

$$
\begin{aligned}
& \frac{1}{(s+2)(s+3)^{2}(s+4)}=\frac{1 / 2}{s+2}+\frac{0}{s+3}-\frac{1}{(s+3)^{2}}-\frac{1 / 2}{s+4} \\
& \text { and } \frac{s+7}{(s+2)(s+4)}=\frac{5 / 2}{s+2}-\frac{3 / 2}{s+4}
\end{aligned}
$$

Expanding $Y(s)$ as

$$
Y(s)=\frac{1 / 2}{s+2}-\frac{1}{(s+3)^{2}}-\frac{1 / 2}{s+4}+\frac{5 / 2}{s+2}-\frac{3 / 2}{s+4}=\frac{3}{s+2}-\frac{1}{(s+3)^{2}}-\frac{2}{s+4} .
$$

Taking the inverse Laplace transform of $\mathrm{Y}(\mathrm{s})$ gives

$$
y(t)=\left(3 e^{-2 t}-t e^{-3 t}-2 e^{-4 t}\right) u(t)
$$

Problem 6.14

(a) The Laplace transform of the input and output signals are given by

$$
X(s)=\frac{4}{s} \quad \text { and } \quad Y(s)=\frac{1}{s^{2}}+\frac{1}{s+2}=\frac{s^{2}+s+2}{s^{2}(s+2)} .
$$

Dividing $Y(s)$ with $X(s)$, the transfer function is given by

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{s^{2}+s+2}{4 s(s+2)}
$$

The impulse response is obtained by taking the partial fraction expansion of $H(s)$ as follows

$$
H(s)=\frac{s^{2}+s+2}{4 s(s+2)} \equiv \frac{1}{4}+\frac{1}{4 s}-\frac{1}{2(s+2)} .
$$

Taking the inverse Laplace transform, the impulse response is given by

$$
h(t)=\frac{1}{4} \delta(t)+\frac{1}{4} u(t)-\frac{1}{2} e^{-2 t} u(t) .
$$

In order to calculate the input-output relationship in the form of a differential equation, we represent the transfer function as

$$
H(s)=\frac{s^{2}+s+2}{4 s(s+2)}=\frac{Y(s)}{X(s)} .
$$

Cross multiplying, we get

$$
4 s(s+2) Y(s)=\left(s^{2}+s+2\right) X(s)
$$

which can be represented as $4 s^{2} Y(s)+8 s Y(s)=s^{2} X(s)+s X(s)+2 X(s)$.
Taking the inverse Laplace transform and assuming zero initial conditions, the differential equation representing the system is given by

$$
4 \frac{d^{2} y}{d t^{2}}+8 \frac{d y}{d t}=\frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}+2 x(t) .
$$

(b) The Laplace transform of the input and output signals are given by

$$
X(s)=\frac{1}{(s+2)} \quad \text { and } \quad Y(s)=3 e^{-4 s} \frac{1}{(s+2)}
$$

Dividing $Y(s)$ with $X(s)$, the transfer function is given by

$$
H(s)=\frac{Y(s)}{X(s)}=3 e^{-4 s} .
$$

The impulse response is obtained by taking the inverse Laplace transform. The impulse response is given by

$$
h(t)=3 \delta(t-4) .
$$

In order to calculate the input-output relationship in the form of a differential equation, we represent the transfer function as

$$
H(s)=3 e^{-4 s}=\frac{Y(s)}{X(s)} .
$$

Cross multiplying, we get

$$
Y(s)=3 e^{-4 s} X(s)
$$

Taking the inverse Laplace transform, the input-output relationship of the system is given by

$$
y(t)=3 x(t-4) .
$$

(d) The Laplace transform of the input and output signals are given by

$$
X(s)=\frac{1}{s+2} \quad \text { and } \quad Y(s)=\frac{1}{s+1}+\frac{1}{s+3} .
$$

Dividing $Y(s)$ with $X(s)$, the transfer function is given by

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{(s+2)}{(s+1)}+\frac{(s+2)}{(s+3)} \equiv 2+\frac{1}{s+1}-\frac{1}{s+3} .
$$

The impulse response is obtained by taking the inverse Laplace transform. The impulse response is given by

$$
h(t)=2 u(t)+e^{-t} u(t)-e^{-3 t} u(t) .
$$

In order to calculate the input-output relationship in the form of a differential equation, we represent the transfer function as

$$
H(s)=\frac{(s+2)(s+1+s+3)}{(s+1)(s+3)}=\frac{Y(s)}{X(s)} .
$$

Cross multiplying, we get $2 s^{2} Y(s)+8 s Y(s)+8 Y(s)=s^{2} X(s)+4 s X(s)+3 X(s)$.
Taking the inverse Laplace transform, the input-output relationship of the system is given by

$$
2 \frac{d^{2} y}{d t^{2}}+8 \frac{d y}{d t}+8 y(t)=\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+3 x(t)
$$

(e) Note that there is no overlap between the ROC's of the two terms $\exp (t) u(-t)$ and $\exp (-3 t) u(t)$, therefore, the Laplace transform for $y(t)$ does not exist.

Problem 6.15

Solution:

(a) $H(s)=\frac{s^{2}+1}{s^{2}+2 s+1}=\frac{(s+j)(s-j)}{(s+1)^{2}}$

Two zeros at $s=j,-j$.
Two poles at $s=1,-1$.
Because both poles are in the left hand side of the s-plane, the system is always BIBO stable.
(b) $\quad H(s)=\frac{2 s+5}{s^{2}+s-6}=2 \frac{(s+2.5)}{(s+3)(s-2)}$

One zero: at $s=-2.5$.
Two poles at $s=2,-3$.
Because one pole is located in the right hand side of the s-plane, the system is NOT stable.
(c) $\quad H(s)=\frac{3 s+10}{s^{2}+9 s+18}=3 \frac{(s+10 / 3)}{(s+3)(s+6)}$

One zero at $s=-10 / 3$.
Two poles at $s=-3,-6$.
Because both poles are in the left side of the s-plane, the system is always BIBO stable.
(d) $\quad H(s)=\frac{s+2}{s^{2}+9}=\frac{(s+2)}{(s+j 3)(s-j 3)}$

One zero at $s=-2$.
Two poles at $s=j 3,-j 3$.
There are only two poles and both poles are located on the imaginary axis. Therefore, the system is a marginally stable system.
(e) $\quad H(s)=\frac{s^{2}+3 s+2}{s^{3}+3 s^{2}+2 s}=\frac{1}{s}$

The system does not have any zero.
One pole at $s=0$.

There is only one pole, which is located on the imaginary axis. Therefore, the system is a marginally stable system.

Problem 6.22

Given the transfer function

$$
H(s)=\frac{s^{2}-s-6}{\left(s^{2}+3 s+1\right)\left(s^{2}+7 s+12\right)}
$$

(a) Determine all possible choices for the ROC.
(b) Determine the impulse response of a causal implementation of the transfer function $H(s)$.
(c) Determine the left sided impulse response with the specified transfer function $H(s)$.
(d) Determine all possible choices of double-sided impulse responses having the specified transfer function $H(s)$.
(e) Which of the four impulse responses obtained in (b)-(d) are stable?

Solution:

(a) Factorizing $H(s)$ gives the following expression for the transfer function

$$
H(s)=\frac{(s-3)(s+2)}{(s+1)(s+2)(s+3)(s+4)}=\frac{(s-3)}{(s+1)(s+3)(s+4)} .
$$

The poles of $H(s)$ are located at $s=-1,-3,-4$. Possible choices of the ROC are:
Choice 1: ROC: $\operatorname{Re}\{s\}>-1$.
Choice 2: ROC: $-3<\operatorname{Re}\{s\}<-1$.
Choice 3: ROC: $-4<\operatorname{Re}\{s\}<-3$.
Choice 4: ROC: $\operatorname{Re}\{s\}<-4$.
(b) For a causal implementation of $H(s)$, the ROC must cover most of the right half of the s-plane to ensure that $h_{1}(t)$ is a right hand sided sequence. The overall ROC is therefore given by ROC: $\operatorname{Re}\{s\}$ >-1.

Taking the partial fraction expansion of $H(s)$ gives

$$
H(s)=\frac{(s-3)}{(s+1)(s+3)(s+4)}=-\underbrace{\frac{2 / 3}{(s+1)}}_{\operatorname{ROC}: \operatorname{Re}\{s\}\rangle>-1}+\underbrace{\frac{3}{(s+3)}}_{\operatorname{ROC}: \operatorname{Re}\{s\}>-3}-\underbrace{\frac{7 / 3}{(s+4)}}_{\operatorname{ROC}: \operatorname{Re}\{s\}>-4} .
$$

Taking the inverse Laplace transform gives

$$
h_{1}(t)=-\frac{2}{3} e^{-t} u(t)+3 e^{-3 t} u(t)-\frac{7}{3} e^{-4 t} u(t) .
$$

Since all three terms in $h_{1}(t)$ decay to 0 as $\mathrm{t} \rightarrow \infty, h_{1}(t)$ is stable.
(c) For a left hand sided implementation of $H(s)$, the ROC must cover most of the left half of the s plane. The overall ROC is therefore given by ROC: $\operatorname{Re}\{s\}<-4$.
Taking the partial fraction expansion of $H(s)$ gives

$$
H(s)=\frac{(s-3)}{(s+1)(s+3)(s+4)}=-\underbrace{\frac{2 / 3}{\left(\frac{(+1)}{(s)}\right.}+\underbrace{\frac{3}{(s+3)}}_{\operatorname{ROC}: \operatorname{Re}\{s\}<-3}-\underbrace{\frac{7 / 3}{(s+4)}}_{\operatorname{ROC}: \operatorname{Re}\{s\}<-4} ~}_{\operatorname{ROC}: \operatorname{Re}\{s\}<-1}
$$

Taking the inverse Laplace transform gives

$$
h_{2}(t)=\frac{2}{3} e^{-t} u(-t)-3 e^{-3 t} u(-t)+\frac{7}{3} e^{-4 t} u(-t) .
$$

Note that $h_{2}(t)$ is not stable because all three terms are unstable.
(d) For a double sided implementation of $H(s)$, the ROC must consist of a narrow strip within the s plane. The overall ROC is therefore given by ROC: $(-3<\operatorname{Re}\{s\}<-1)$, or, ROC: $(-4<\operatorname{Re}\{s\}<$ -3).

If ROC: $(-3<\operatorname{Re}\{s\}<-1)$, then $H(s)$ is expressed as

$$
H(s)=\frac{(s-3)}{(s+1)(s+3)(s+4)}=-\underbrace{\frac{2 / 3}{(s+1)}}_{\operatorname{ROC}: \operatorname{Re}\{s\}<-1}+\underbrace{\frac{3}{(s+3)}}_{\operatorname{ROC}: \operatorname{Re}\{s\}\rangle>-3}-\underbrace{\frac{7 / 3}{(s+4)}}_{\operatorname{ROC}: \operatorname{Re}\{s\}>-4} .
$$

Taking the inverse Laplace transform gives

$$
h_{3}(t)=\frac{2}{3} e^{-t} u(-t)+3 e^{-3 t} u(t)-\frac{7}{3} e^{-4 t} u(t) .
$$

Note that such $h_{3}(t)$ is not stable because the term $\frac{2}{3} e^{-t} u(-t)$ is not stable.
On the other hand, if ROC: $(-4<\operatorname{Re}\{s\}<-3)$, then $H(s)$ is expressed as

$$
H(s)=\frac{(s-3)}{(s+1)(s+3)(s+4)}=-\underbrace{\frac{2 / 3}{(s+1)}}_{\operatorname{ROC}: \operatorname{Re}\{s\}<-1}+\underbrace{\frac{3}{(s+3)}}_{\operatorname{ROC}: \operatorname{Re}\{s\}<-3}-\underbrace{\frac{7 / 3}{(s+4)}}_{\operatorname{ROC}: \operatorname{Re}\{s\}>-4} .
$$

Taking the inverse Laplace transform gives

$$
h_{4}(t)=\frac{2}{3} e^{-t} u(-t)-3 e^{-3 t} u(-t)-\frac{7}{3} e^{-4 t} u(t) .
$$

Note that such $h_{4}(t)$ is not stable because the terms $\frac{2}{3} e^{-t} u(-t)$ and $3 e^{-3 t} u(-t)$ are not stable.
(e) As shown above, the implementation $h_{1}(t)$ with the overall ROC given by ROC: $\operatorname{Re}\{s\}>-1$ is stable. The remaining implementations $h_{2}(t), h_{3}(t)$, and $h_{4}(t)$ are unstable.

