
Web Application Attack 
Techniques

Mark Shtern



Popular attack targets

• Web 

– Web platform 

– Web application (12 issues per Application)



Web platform vulnerabilities

• Sample files in production environment

• Configured incorrectly

• Source code disclosure

• Canonicalization

• Server extensions

• Input validation (e.g. buffer overflow)



Web Application Vulnerabilities

• Identify applications running on ports

• Find version information (if possible)

• Look for exploits on the Internet

• Run the exploits against the target application.



Web Application

• Injections (not only in web applications) (one 
in five applications)

• Cross-Site Scripting (affected two thirds of 
applications 2011)

• Cross Site Request Forgery

• Remote code execution

• Format String 

• Username enumeration



Web Application

• Broken Authentication and Session 
Management

• Insecure Direct Object References

• Security Misconfiguration

• Sensitive Data Exposure

• Missing Function Level Access Control

• Using Known Vulnerable Components

• Unvalidated Redirects and Forwards



Vector of Attack



SQL Injection

• The ability to inject SQL commands into the 
database engine through an existing 
application



What is SQL?

• SQL stands for Structured Query Language

• Allows us to access a database 

• ANSI and ISO standard computer language 
– The most current standard is SQL99

• SQL can:
– execute queries against a database 

– retrieve data from a database 

– insert new records in a database 

– delete records from a database 

– update records in a database



SQL Queries

• With SQL, we can query a database and have a 
result set returned

• A query looks like this:

SELECT LastName 
FROM users 
WHERE UserID = 5;



SQL Data Manipulation Language 
(DML)

• SQL includes a syntax to update, insert, and 
delete records:

– SELECT - extracts data

– UPDATE - updates data

– INSERT INTO - inserts new data 

– DELETE - deletes data



SQL Data Definition Language 
(DDL)

• The Data Definition Language (DDL) part of SQL:
– Creates or deletes database tables

– Defines indices (keys)

– Specifies links between tables

– Imposes constraints between database tables

• Some of the most commonly used DDL statements in SQL are: 
– CREATE TABLE - creates a new database table

– ALTER TABLE - alters (changes) a database table

– DROP TABLE - deletes a database table



Example

Common vulnerable login query 
SELECT * FROM users 

WHERE login = ‘root'

AND password = '123'

(If it returns something then login!)



Example

formusr = root' or 1=1 – –

formpwd = anything

Final query would look like this:

SELECT * FROM users

WHERE username = ‘root' or 1=1

– – AND password = 'anything'



Countermeasures

• Do not use string concatenation or string 
replacement

• Use prepared or parameterized SQL statements, 
also known as prepared statements

• Encrypt the underlying data such that it cannot 
be disclosed in the case of a SQL injection–
induced breach

• Validate the data being used in the SQL statement



Cross-Site Scripting (XSS )

• Scripting: Web Browsers can execute commands
– Embedded in HTML page
– Supports different languages (JavaScript, VBScript, ActiveX, 

etc.)
– Most prominent: JavaScript

• “Cross-Site” means: Foreign script sent via server to client
– Attacker makes Web-Server deliver malicious script code
– Malicious script is executed in Client’s Web Browser

• Attack:
– Steal Access Credentials, Denial-of-Service, Modify Web 

pages
– Execute any command at the client machine



Simple XSS attack

• JSP page

<% out.println(“Welcome ” + 
request.getParameter(“name”))%>

http://example.com?name=test

• Attack
http://example.com?name=<script>alert(“Attack”)<script>

http://example.com/?name=test


XSS Example

• Attacker
– Posts forum message

• Subject: “Get free money”

• Body <script>attack code</script>

• WEB Server
– Stores the post

• User 
– Reads the message

– Malicious code executed



Cross-Site Scripting

• The three conditions for Cross-Site Scripting:

– A Web application accepts user input

– The input is used to create dynamic content

– The input is insufficiently validated



Cross Site Request Forgery

• Exploits a website’s trust in the user/browser

• Generally involves websites that rely on the 
identity of the users

• Performs HTTP requests of the attacker’s 
choosing

• Intent is to trick a user into performing an 
HTTP request/action

• Attack is not “personal”



Cross Site Request Forgery

• Websites use URLs to specify requests for an 
action

• Example (from wikipedia)
– <img

src="http://bank.example/withdraw?account=bob 
&amount=1000000&for=mallory">

• Instead of the withdrawal happening from inside 
the banking website, an image in Mallory’s 
website attempts to trigger a transfer from Bob’s 
bank account to Mallory’s which will work if Bob’s 
bank cookie has not expired



Typical CSRF Process

• Attacker posts an IMG tag or other code that 
sends an HTTP request

• Code posted usually causes a request to be 
made to another site (hence the term “cross-
site”)

• Victim loads page with bad code

• Victim unknowingly causes an HTTP request to 
be sent



Countermeasures

• Web application should insert random values, 
tied to the specified user’s session, into the 
forms it generates

• Web application should  re-authenticate every 
time when users are about to perform a 
particularly dangerous operation



Automatic Tools

• Burp/WebScarab

• Proxy Server

• Spider tool

• Vulnerability scanner

• Repeater tool

• Sequencing tool

• Decode/Encode tool

http://portswigger.net/proxy/
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project


Practice

• https://google-gruyere.appspot.com/

• Burp/WebScarab

https://google-gruyere.appspot.com/
http://portswigger.net/proxy/
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

