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A b s t r a c t  

Given the recent evidence for prot)abilistic 
mechanisms in models of hmnan aml)iguity res- 
olution, this paper investigates the plausibil- 
ity of exl)loiting current wide-coverage, 1)rob- 
al)ilistic 1)arsing techniques to model hmnan 
linguistic t)ert'orman(:e. In l)arl.i(:ulm ', we in- 
vestigate the, t)crforlnance of stan(tar(l stoclms- 
tic parsers when they arc revis(;(l to el)crate 
incrementally, and with reduced nlenlory re- 
sources. We t)resent techniques for ranking 
and filtering mlMyses, together with exl)erimen- 
tal results. Our results confirm that  stochas- 
tic parsers which a(lhere to these 1)sy('hologi- 
cally lnotivated constraints achieve goo(l l)er- 
f()rman(:e. Memory cast t)e reduce(t (lown to 
1% ((:Oml)are(l to exhausitve search) without re- 
ducing recall an(l 1)rox:ision. A(lditionally, thes(; 
models exhil)it substamtially faster l)ertbrmance. 
FinMly, we ~rgue that  this generM result is likely 
to hold for more sophisticated, nnd i)sycholin- 
guistically plausil)le, probal)ilistic parsing mod- 
els. 

1 I n t r o d u c t i o n  

Language engineering and coml)ut~tional psy- 
cholinguistics are often viewed as (list|net re- 
search progrmnmes: engineering sohttions aim 
at practical methods which ('an achieve good 
1)erformance, typically paying little at tention 
to linguistic or cognitive modelling. Comlm- 
tational i)sycholing,fistics, on the other hand, 
is often focussed on detailed mo(lelling of hu- 
man lmhaviour tbr a relatively small number 
of well-studied constructions. In this paper we 
suggest that,  broadly, the human sentence pro- 
cessing mechanism (HSPM) and current  statis- 
ti(:al parsing technology can be viewed as having 
similar ol)jectives: to optimally (i.e. ral)idly and 
accurately) unders tand l;he text and utl;erances 

they encounter. 
Our aim is to show that  large scale t)robabilis- 

tic t)arsers, when subjected to basic cognitive 
constraints, can still achieve high levels of pars- 
ing accuracy. If successful, this will contribute 
to a t)lausil)h; explanation of the fact th~tt I)(;() - 
])lc, in general, are also extremely accurate and 
rol)llS(;. Sllch a 1'o81111; Wollld also strellgthclt ex- 
isting results showing that  related l)robal)ilistic 
lne('hanisms can exl)lain specific psycholinguis- 
tic phenomena. 

To investigate this issue, we construct  a stan- 
dard 'l)aseline' stochastic parser, which mir- 
rors t;he pertbrmance of a similar systems (e.g. 
(,lohnson, 1998)). We then consider an incre- 
re(total version of th(', parser, and (;v~,htat(; tim 
etf'c(:ts of several l)rol)al)ilistic filtering strate- 
gies which m'e us(,(l to 1)rune the l)arser's search 
space, and ther(;l)y r('(lu('(', memory load. 

rio &,,-;sess th(; generMity of oltr resnll;s for 
more Sol)histi(;ate(t prot)al)ilistic models, we also 
conduct experiments using a model in which 
parent-node intbrmation is encoded on the 
(laughters. This increase in contextual informa- 
tion has t)(;(;11 shown 1;o improve t)erforlnance 
(.Johnson, 1998), and the model is also shown 
to be rolmst to the inerementality and memory 
constraints investigated here. 

We present the results of parsing pertbr- 
mance ext)eriments , showing the accuracy of 
these systems with respect to l)oth a parsed 
corpus and the 1)aseline parser. Our experi- 
ments suggest that  a strictly incremental model, 
in which memory  resources are substantially 
reduced through filtering, can achieve l)reci- 
sion and recall which equals that  of 'unre- 
stricted' systems. Furthermore,  implementa- 
tion of these restrictions leads to substantially 
faster 1)(;rtbrmance. In (:onchlsion, we argue 
that  such 1)road-coverage probabilistic parsing 
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models provide a valuable framework tbr ex- 
plaining the human capacity to rapidly, accu- 
rately, and robustly understand "garden va- 
riety" language. This lends further supt)ort 
to psycholinguistic accounts which posit proba- 
bilistic ambiguity resolution mechanisms to ex- 
plain "garden path" phenomena. 

It is important  to reiterate that  our intention 
here is only to investigate the performance of 
probabilistic parsers under psycholinguistically 
motivated constraints. We do not argue for the 
psychological plausibility of SCFG parsers (or 
the parent-encoded variant) per se. Our inves- 
tigation of these models was motivated rather 
by our desire to obtain a generalizable result 
for these simple and well-understood models, 
since obtaining similar results for more sophisti- 
cated models (e.g. (Collins, 1996; Ratnaparkhi,  
199711 might have been at tr ibuted to special 
properties of these models. Rather, the current 
result should be taken as support  tbr the poten- 
tial scaleability and performance of probabilistic 
I)sychological models such as those proposed by 
(aurafsky, 1996) and (Crocker and Brants, to 
appear). 

2 Psycholinguist ic  M o t i v a t i o n  

Theories of human sentence processing have 
largely been shaped by the study of pathologies 
in tnnnan language processing behaviour. Most 
psycholinguistic models seek to explain the d{f- 
ficulty people have in comprehending structures 
that are ambiguous or memory-intensive (see 
(Crocker, 1999) for a recent overview). While 
often insightflfl, this approach diverts attention 
from the fact that people are in fact extremely 
accnrate and effective in understanding the 
vast majority of their "linguistic experience". 
This observation, combined with the mounting 
psycholinguistic evidence for statistically-based 
mechanisms, leads us to investigate the merit of 
exploiting robust, broad coverage, probabilistie 
parsing systems as models of hmnan linguistic 
pertbrmance. 

The view that  hmnan language processing 
can be viewed as an optimally adapted sys- 
tem, within a probabilistic fl'amework, is ad- 
vanced by (Chater et al., 19981, while (Juraf- 
sky, 19961 has proposed a specific probabilis- 
tic parsing model of human sentence process- 
ing. In work on human lexical category dis- 

ambiguation, (Crocker and Corley, to appear), 
have demonstrated that  a standard (iimrmnen- 
tal) HMM-based part-of-speech tagger mod- 
els the finding from a range of psycholinguis- 
tic experiments. In related research, (Crocker 
and Brants, 19991 present evidence that an 
incremental stochastic parser based oll Cas- 
caded Markov Models (Brants, 1999) can ac- 
count tbr a range of experimentally observed 
local ambiguity preferences. These include 
NP/S complement ambiguities, reduced relative 
clauses, noun-verb category ambiguities, and 
' that '-ambiguities (where ' that '  can be either a 
complementizer or a determiner) (Crocker and 
Brants, to appear). 

Crucially, however, there are differences be- 
tween the classes of mechanisms which are psy- 
chologically plausible, and those which prevail 
in current language technology. We suggest that  
two of the most important  differences concern 
incrcmentality~ and memory 7vso'urces. There is 
overwhehning experimental evidence that peo- 
ple construct connected (i.e. semantically in- 
terpretable) analyses for each initial substring 
of an utterance, as it is encountered. That  is, 
processing takes place incrementally, from left 
to right, on a word by word basis. 

Secondly, it is universally accecpted that peo- 
ple can at most consider a relatively small 
number of competing analyses (indeed, some 
would argue that number is one, i.e. process- 
ing is strictly serial). In contrast, many exist- 
ing stochastic parsers are "unrestricted", in that 
they are optinfised tbr accuracy, and ignore such 
t)sychologically motivated constraints. Thus the 
appropriateness of nsing broad-coverage proba- 
bilistic parsers to model the high level of hu- 
man performance is contingent upon being able 
to maintain these levels of accuracy when the 
constraints of" incrementality and resource limi- 
rations are imposed. 

3 Incremental  Stochastic 
Context-Free Parsing 

The fbllowing assumes that  the reader is fa- 
miliar with stochastic context-free grammars 
(SCFG) and stochastic chart-parsing tech- 
niques. A good introduction can be found, e.g., 
in (Manning and Schfitze, 19991. We use stan- 
dard abbreviations for terminial nodes, 11051- 
terminal nodes, rules and probabilities. 
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This  t)tq)er invcsl;igates s tochast ic  (;onl;(;xl;- 
fl'ee pars ing l)ascd on ~ grmmmu" (;hat is (tcrivc(l 
from a trcel)ank, s ta r t ing  wi th  1)art-ofsl)eech 
ta,gs as t(;rlninals. The  gl:;~nllnt~r is (lcriv(;d l)y 
(:olle(:ting M1 rul('.s X -+ c~ th;tt oc(:ur in the tr(',(;- 
bank  mM (;heir ffe(lU(m(:i('~s f .  T h e  l)l'()l);tl)ilil;y 
of a rule is set to 

.f(x l ' ( x  - (:l) 
E . f(x 
fl 

],br ~ descril)l;ion of t reebank g rammars  see 
(Charniak ,  1.996). The  gr~mmmr does not  coii- 
ta.in c-rules, oth(:rwis(: th(:r(: is no restr ic t ion 
oll the rules. In part icular ,  w(: do not r(:quir(' 
C homsky-NormM-Form.  

In addi t ion  to the rult:s tha(; corr(:st)ond 
(;o sl;rucl;ur(:s in th(: corpus, w(: a.dd ;~ new 
st~u:l; sylnl)ol ROOT to l;h(; grnmmar and rules 
ROOT -~ X for al l  non-t;(;rminals X togel;lwx 
with  l)rol)al)iliti('s (h:):iv(:d l'roln th(: root  n()(t(:s 
in th(: tort)us I. 

For t)m:sing th(:se gr~unmn)'s, w(: r(:ly upon  
n s tan(tard l)oLi;onl-U t) (:ha.rl,-t)arsing t(:(:hniqu(: 
wi th  n modif icat ion for in(:rcmental parsing, i.(:., 
tbt" each word, all edges nr(: proc(:ss(:d and l)ossi- 
b]y 1)run(:d 1)(:ti)r(: ])ro(:e(:(ling to the next  word. 
Th(: outli lm of th(: Mgori thm is as follows. 

A (:hart; (:ntry 1~ (:onsists of a sl;;u:I, a im (:n(l 1)o- 
s i t ion  i ;rod j ,  a (tott(:d rul(: X ~ (~:.'7, tim insi(t(: 
l)rol)nl)ility fl(Xi,.j) thud; X g(:n(:ra.tx:s l;ll(: t(:rmi- 
hal s t r ing from t)osi(:ion i to .7, mM informat ion  
M)out th(: most  l)robat)](: ilL~i(t(' stru(:i;ur(:. 1t7 th(: 
dot  of th(: dotte(t  ruh: is nt th(' r igh tmost  i)osi- 
tion, the corresl)ondillg (:(lg(: is an inac t ive  edg(:. 
If  the (tot is at  mty other  1)osition, il; is mt ,,ctivc, 
edge. Imu:l;ivo, e(tgcs repr(',scnt re('ogniz(',d hypo- 
(:heti(:a,1 const i tuents ,  whil(; a(:tiv(; (;(lg(',s r(;1)r(;- 
s(:nt 1)r(:lixes of hyl)ol;heticM (:()llsi;it;ll(:lll;s. 

Th(: i th  t(:rminal nod(: I,i l;lla, t; (:nt(:rs th(: (:hart 
gencra, tcs an inactive edge for l;]m span (i - 1, i). 
Ba, sed on this, n(;w active mid inactive (;(lges are 
genera ted  according to the stan(t~tr(t a lgor i thm.  
Sine(: we are ilfl;(:r(:stcd in th(: most  i)robM)le 
pars(:, the chart  can be minimized in th(: tbl- 
lowing way whik: sti]l 1)crfi)rming an ('xhaustiv(: 
search. If" ther(: is mor(: l;hm~ one (:(lg(~ tha t  cov- 
ers a span ( i , j )  having (;h(', sa, me non-t(:rminM 
symbol  on th(; lefIAmnd side of th(: (to(,(x:(l rule, 

1The ROOT node is used int;ernally fl)r parsing; it is 
neither emitted nor count,ed for recall and l)recision. 

only the one wi th  the highest  inside prol)M)ility 
is k(;1)t ill tit(; (:]mrt. The  others cmmot  con- 
trilmt(; to th(; most  i)rol)M)le 1)nrse.. 

For an ina('tiv(: edge si)aiming i to j and  rei)- 
rcs(mting the rule X --> y 1 . . . y q ~  the inside 
l)robM)ility/31 is set to 

[d 
il = 1"(x -+ H (2) 

/=] 

wher(: il and jl mm'k the s tar t  and end t)ostit ion 
of Yl having i = il nnd j = Jr. The  insid(: 
prol)M)ility tbr an active cdg(: fiA with  the dot  
after th(: k th  syml)ol of th(: r ight-hmM side is 
sol, to 

k 

I I  <r ' t I t  i l , j l}  (3) 
l-d 

W(: (lo not use the t)rol)M)i]ity of th(: rule a.t this 
point.  This  allows us to ('oral)in(: a.ll (:(Ig(:s wi th  
(;h(: sam(: st)m~ and  th(: dot al; th(: sam(: 1)osition 
but  with (liiI'er(:uI; symbols  on the l(,ft-hmM side. 
Jntrodu(:ing a distinguish(:(1 M' t -hand sid(: only 
for in~mtiv(: (:(lg('s significantly r(:du(;(:s th(: nun> 
b(:r of a(:(;iv(: (:dg(:s in the (:hm't. This  goes one 
st, e t) furth(:r t h a n  lint)licitly right-1)inarizing th(: 
grmmnar ;  not only suilix(:s of r ight-hmM si(h:s 
are join(:(t, but  also l;hc ('orr(:sponding l(:fi;-hand 
sid(:s. 

d M e m o r y  R e s t r i c t i o n s  

\¥(: inv(:stig~rt(: th(: (dimin~I;ion (pruning) ()f 
edges from th(: ('hnrt in our in('r(:nl(:n|;a| ])re's- 
ing sch(:m(:. Aft(:r processing a word and  b(:fi))'(: 
1)roc(:cding to the n(:xt word dur ing incrementa l  
1)re:sing, low rnnk(,d edges ~r(: removed. This  is 
(:(luivM(:lfl; t;() imposing m(:mory rcsia'ictions on 
the t)ro(:('ssing system. 

The, original a lgor i thm k('ei)s on(; edge in th(: 
(:hart fi)r each (:oml)ination of span (start  and 
cn(l position) ~md non- tc rmimd symbol  (for in- 
active edges) or r igh t -hand  side l)r(:fixcs of  (lot;- 
te(t rules (for active edges). W i t h  1)tinting, we 
restric(; the mmfl)cr of edges allowed per span. 
The  l imit~tion (:an b(: cxi)resscd in two ways: 

1. Va'riable bcam,. Sch:ct a threshold 0 > 1. 
Edg(: c. is removed, ill i ts 1)rol)ability is p~:, 
I;lm 1)csl; l)rol)M)ility fi)r the span is Pl,  and 

v,; < pl_. (~l) 
0 
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2. Fixed beam. Select a maximum number of 
edges per span m. An edge e is removed, if 
its prot)ability is not in the first m highest 
probabilities tbr edges with the same span. 

We pertbrmed exl)eriments using bo th  types 
of beauls. Fixed beams yielded consistently bet- 
ter results than variable beams when t)lotting 
chart size vs. F-score. Thereibre, the following 
results are reported tbr fixed t)eams. 

We, compare and rank edges covering the 
same span only, and we rank active and inactive 
edges separately. This is in contrast  to (Char- 
niak et al., 1998) who rank all edges. They 
use nornmlization in order to account tbr dif- 
ferent spans since in general, edges for longer 
spans involve more nmltiplications of t)robabil - 
ities, yielding lower probabilities. Charniak et 
al.'s normalization value is calculated by a dil- 
ferent probabil i ty model than the inside proba- 
bilities of the edges. So, in addit ion to the nor- 
malization for different span lengths, they need 
a normalizatio11 constant that  accounts tbr the 
different probabil i ty models. 

This investigation is based on a much simt)ler 
ranking tbrmula. We use what  can be described 
as the unigram probabili ty of a non-terminal 
node, i.e., the a priori prot)ability of the c o l  
resl)onding non-ternlinal symbol(s) times the 
inside t)robat)ility. Thus, fi~r an inactive edge 
(i, j,  X --> (~,/31(Xi,j)}, we use the l)rob~fl)ility 

P m ( X i , j )  = P ( X )  . P ( t g . . . t j _ I I X )  (5) 
= 

for ranking. This is the prol)ability of the node 
and its yield being present in a parse. The 
higher this value, |;lie bet ter  is this node. flI is 
the inside probabil i ty for inactive edges as given 
in eqnation 2, P ( X )  is the a priori probabil i ty 
tbr non-terminal X,  (as est imated from the fre- 
quency in the training COrlmS) and P m  is the 
probabili ty of the edge tbr the non-terminal X 
spanning positions i to j that  is used tbr rank- 
ing. 

For an active edge { i , j , X  --~ y1 . . . y k .  
y k + l  y m ,  y )  k • " ~ , , ~  )) " ' "  ~A( i l , j l  (the (tot is aI" 
ter the kth symbol of 
llSe: 

the right-hand side) we 

(7) 

= P ( Y I . . . Y k ) . f l A ( E I ~ , : h . . . Y i ~ , j k )  (9) 

p ( y l  , , ,  yk )  can be read ()If the corpus. It is 
the a priori probabil i ty that  the right-hand side 
of a production has the prefix y1 . . .  y/c, which 
is estilnated by 

f ( y l  . . .  yt~ is prefix) 
00) 

N 

where N is the total  number  of productions in 
the corpus 2, i = ij ,  j = j/~ and flA is the inside 
probabil i ty of the pretix. 

5 E x p e r i m e n t s  

5.1 D a t a  

We use sections 2 - 21 of the Wall Street Jour- 
lYecl)ank (Marcus el; al., nal part  of' the Penn ~ " 

1993) to generate a t reebank grammar. Traces, 
flmctional tags and other tag extensions that  do 
not mark syntactic category are removed before 
training 3. No other modifications are made. For 
testing, we use the ] 578 sentences of length 40 
or less of section 22. The input to the parser is 
the sequence of i )ar t-ofspeech tags. 

5.2 E v a l u a t i o n  

For evaluation, we use the parsewfi measures 
and report labeld F-score (the harmolfiC mean 
of labeled recall and labeled precision). R.eport- 
ing the F-score makes ore" results comt)aral)le to 
those of other previous experinmnts using the 
same data  sets. As a n l e a s u r e  o f  t h e  a n l o u n t  

of work done by the parser, we report the size 
of the chart. The mnnl)er of active and imm- 
rive edges that  enter the chart is given tbr the 
exhaustive search, not cored;lug those hypothet-  
ical edges theft are replaced or rejected because 
there is an alternative edge with higher t)roba- 
t)ility 4. For t)runed search, we give |:tie percent- 
age of edges required. 

5.3 F i x e d  B e a m  

For our experiments, we define the beam by a 
maximunl number of edges per span. Beams 
for active and inactive edges are set separately. 
The Imams run from 2 to 12, and we test all 

2Here, we use proper prefixes, i.e., all prefixes not 
including the last element. 

aAs an example, PP-TMP=3 is replaced 173, PP. 
4The size of the chart is corot)arable to the "number 

of edges popped" as given in (Chanfiak et al., 1998). 
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Figure  1: ]!}xt)erimental results  tbr increJnelfl;al parsing and t)rmfing. The  figm:e shows the percent-  
age of edges relative to (',xhaustiv(; s(;ar(:h mid l;h(', F-s(:()re a(:hieved wi th  this chart  size. Exhaus t ive  
search yiehled 71.21% fin" th(; original en(:o(ting and 7!).28% for the I)arent (m(:o(ting. l/.c, sull;s in the 
grey ar(;as are equiwflent wi th  a (:()nli(l('n(:('~ (tegr(',e of (~ =: 0.99. 

12] comlfi]~ati(ms of the, s(~ lmmus for ac:i;ivc and  
illactiw~ edges, l~ach se t t ing results  in a lm.ri;ic - 
ulm" average size of l;he chart  and  an F-score, 
which arc tel)erred ill (;he following se(:l;ioll. 

5 . 4  E x p e r i m e n t a l  R e s u l t s  

The  results of our  121 tes(; Hills with (tifl'erent 
set t ings for active and  in;u:tivc ])(~a.ms m'e given 
in figure 1. The  (tittgranl shows ch~trt sizes vs. 
labeled F-scores. It sorts char|; sizes across d i f  
ferent sel;l;ings of the beams.  If  several beam 
sett;ings result  in equiwdenfi chart  sizes, the di- 
ag ram cent;tins the one yielding th(', highes|, F- 
S C O I ' ( L  

The  111~ill t inding is thai: we can r('xlu(:e the 
size of the chart  to l)el;ween 1% and 3% of 
the  size required fi)r exhaust ive  s(,ar(:h wi thout  
affecting the results. Only very smal l  1)cams 
d(;grad(' t )ertbrmance 5. The  eiti;ct occurs for 
b o t h  models despite the simple ranking  formub~. 
This  significantly reduces memory  r(,quirements 

'~Givc, n the' amount of test data (26,322 non-terminal 
nod(!s), results within a rang(' of around 0.7% arc cquiv- 
al(mt with a (:onfidcnc(; degr(',(, of (~ = 99%. 

(given as size of the chart) and  increases l)m'sing 
qmed.  

i1 t Exhaus t ive  search yields an I -Score  of 
71.21 % when using the original Petal %'eel)ank 
cn(:odh~g. ()nly a round  1% the edges are re- 
(tuir('.d to yield e.(tuiwdcnt resul(;s wi th  incrcm(,.n- 
tal processing and  printing after each word is 
added  to the chart;. This  result is, a m o n g  other  
settings, ob ta ined  by a tixcd beam of 2 for in- 
active edges and  3 tin" active e(lges ri 

1,br the parmtt  encoding, exhaust ive  search 
yields an l,-Scorc of 79.28%. Only  1)etween 2 
mM 3% of the edges are required to y M d  an 
equiwflcnt result  wi th  incremental  t)l'OCcSSillg 
and pruning.  As an cXmnl)le, the point  at  size 
= 3.0% F-score = 79.1% is genera ted  by the 
beam set t ing of 12 for imml;ive and  9 tbr active 
edges. The  parent  encoding yields a round  8% 
higher F-scores but  it also imposes a higher  ab- 
solute and  relative memory  load on t;he process. 
The  higher (hw'ee of par~dlelism in l;he inactive 

(;Using variable Imams, wc would nccd ].95% of the 
[:hart entries 1;o achieve a n  (Kl l l iva len I ;  F - s c o r ( x  
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chart stems from the parent hytmthesis in each 
node. In terms of pure node categories, the av- 
erage number of parallel nodes at this point is 
3.5 7 . 

Exhaustive search for the base encoding needs 
in average 140,000 edges per sentence, tbr tile 
parent encoding 200,000 edges; equivalent re- 
sults for the base encoding can be achieved with 
around 1% of these edges, equivalent results tbr 
the parent encoding need between 2 and 3%. 

The lower mmlber of edges significantly in- 
creases parsing speed. Using exhaustive search 
tbr the base model, the parser processes 3.0 to- 
kens per second (measured on a Pent ium III 
500; no serious efforts of optimization have gone 
into the parser). Wi th  a chart size of 1%, speed 
is 630 tokens/second. This is a factor of 210 
without decreasing accuracy. Sl)eed for the par- 
ent model is 0.5 tokens/second (exhaustive) and 
111 tokens/seconds (3.0% chart size), yielding 
an improvement by factor 220. 

6 Related Work 

Probably mostly related to the work reported 
here are (Charniak et al., 1998) and (Roark and 
Johnson, 1999). Both report  on significantly 
improved parsing efl:iciency by selecting only 
subset of edges tbr processing. There are three 
main differences to our at)t)roach. One is that 
they use a ranking fbr best-first search while 
we immediately prune hypotheses. They need 
to store a large number edges because it is not 
known in advance how m a w  of the edges will be 
used until a parse is found. Tile second differ- 
ence is that  we proceed strictly incrementally 
without look-ahead. (Chanfiak et al., 1998) 
use a non-incremental procedure,  (Roark and 
Johnson, 1999) use a look-ahead of one word. 
Thirdly, we use a much simpler ranking tbnnula. 

Additionally, (Chanfiak et al., 1998) and 
(Roark and Johnson, 1999) do not use the 
original Penntree encoding tbr the context-fl'ee 
structures. Betbre training and parsing, they 
change/remove some of the productions and in- 
troduce new part-of-speech tags tbr auxiliaries. 
The exact effect of these modifications is un- 
known, and it is unclear if these affect compa- 

7For the active chart, lmralellism cannot be given for 
different nodes types since active edges are introduced 
fbr right-hand side prefixes, collapsing all possible left- 
hand sides. 

rability to our results. 
Tile heavy restrictions in our method (imme- 

diate pruning, no look-ahead, very simple rank- 
ing formula) have consequences on the accuracy. 
Using right context and sorting instead of prun- 
ing yields roughly 2% higher results (compared 
to our base encodingS). But  our work shows 
that even with these massive restrictions, the 
chart size can be reduced to 1% without  a de- 
crease in accuracy when compared to exhaustive 
search. 

7 Conclusions 

A central challenge in computat ional  psycholin- 
guistics is to explaiu how it is that  people are 
so accurate and robust  in processing language. 
Given the substantial  psycholinguistic evidence 
tbr statistical cognitive mechanisms, our objec- 
tive in this paper was to assess the plausibility 
of using wide-coverage probabilistic parsers to 
model lmman linguistic performance. In par- 
ticular, we set out  to investigate the effects of 
imposing incremental processing and significant 
memory limitations on such parsers. 

The central finding of our experiments is that  
incremental parsing with massive (97% - 99%) 
pruning of the search space does not impair 
the accuracy of stochastic context-free parsers. 
This basic finding was rotmst across different 
settings of the beams and tbr the original Penn 
Treebank encoding as well as the parent encod- 
ing. We did however, observe significantly re- 
duced memory and time requirements when us- 
ing combined active/inactive edge filtering. To 
our knowledge, this is the first investigation on 
tree-bank grammars that  systematically varies 
the beam tbr pruning. 

Our ainl in this paper  is not to challenge 
state-of-the-art parsing accuracy results. For 
our experiments we used a purely context-ti'ee 
stochastic parser combined with a very sim- 
ple pruning scheme based on simple "unigram" 
probabilities, and no use of right context. We 
do, however suggest that  our result should ap- 
ply to richer, more sophistacted probabilistic 

SComparison of results is not straight-forward since 
(Roark and Johnson, 1999) report accuracies only tbr 
those sentences for which a parse tree was generated (be- 
tween 93 and 98% of the sentences), while our parser 
(except for very small Imams) generates parses for vir- 
tually all sentences, hence we report; accuracies for all 
sentences. 
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models, e.g. when adding word st~tistics to the 
model (Charni~d¢, 1997). 

We thereibre conclude theft wide-covcr~ge, 
prol)~fl)ilistic pnrsers do not suffer impaired a('- 
curacy when subject to strict cognii;iv(~ meXnOl'y 
limitntions mM incremental processing. Fm'- 
thermore, parse times are sut)stm~ti~fily reduced. 
This sltggt',sts that  it; m~y lie fruit;tiff to tlur,sllC 
the use of these models within ¢',onlt)utational 
l)sycholinguistics, where it: is necessary to ex- 
plain not Olfly the relatively r~tr(; 'pathologies' of 
the hmmm parser, but also its mor(; fl'e(tuently 
ol)scrved ~u:(:ur~my m~(1 rol)llSiilless. 
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