```
CSE6339 3.0 Introduction to Computational Linguistics
Insructor: Nick Cercone - 3050 LAS - nick@cse.yorku.ca
    Winter Semester, }201
    Markov Algorithms
```

Determine what the following Markov algorithm does and explain why it does not double a string. What change(s) would it take to make it double a string?

```
\(\zeta \eta \beta \rightarrow \eta \beta \zeta \quad \zeta, \eta\) are members of the alphabet
    \(\alpha \zeta \rightarrow \quad \zeta \beta \zeta \alpha \quad \lambda\) represents the null symbol
        \(\beta \rightarrow \lambda \quad \alpha, \beta\) are markers
        \(\alpha \rightarrow \quad . \lambda\)
\(\lambda \rightarrow \alpha\)
```

The algorithm
$\mathrm{abc} \rightarrow \alpha \mathrm{abc} \rightarrow \mathrm{a} \beta \mathrm{a} \alpha \mathrm{bc} \rightarrow \mathrm{a} \beta \mathrm{ab} \beta \mathrm{b} \alpha \mathrm{c} \rightarrow \mathrm{a} \beta \mathrm{b} \beta \mathrm{ab} \alpha \mathrm{c} \rightarrow \mathrm{a} \beta \mathrm{b} \beta \mathrm{abc} \beta \mathrm{c} \alpha \rightarrow \mathrm{a} \beta \mathrm{b} \beta \mathrm{ac} \beta \mathrm{bc} \alpha \rightarrow \mathrm{a} \beta \mathrm{b} \beta \mathrm{c} \beta \mathrm{abc} \alpha \rightarrow$
$\mathrm{ab} \beta \mathrm{c} \beta \mathrm{abc} \alpha \rightarrow \mathrm{b} \beta \mathrm{ac} \beta \mathrm{abc} \alpha \rightarrow \mathrm{b} \beta \mathrm{c} \beta$ aabc $\alpha \rightarrow \mathrm{bc} \beta \mathrm{aabc} \alpha \rightarrow \mathrm{bcaabc} \alpha \rightarrow \mathrm{bcaabc}$

To double or duplicate the string use the following Markov algorithm

$:$ [prod. schema]	$f \delta \beta \rightarrow$	$\delta \beta f$	δ, f are members of the alphabet
$:[$ prod. schema]	$\S f \rightarrow$	$f \beta f \S$	
$:$	β	\rightarrow	σ
$:$	σ	\rightarrow	W
$5:$	\S	\rightarrow	$\bullet W$
$:$	W	\rightarrow	\S

$\rightarrow($ by 2$) \mathrm{a} \sigma \mathrm{b} \boldsymbol{\beta} \mathrm{abc} \boldsymbol{\beta} \mathrm{c} \S \rightarrow(\mathrm{by} 1) \mathrm{a} \boldsymbol{\sigma} \mathrm{b} \boldsymbol{\beta} \mathrm{ac} \boldsymbol{\beta} \mathrm{bc} \S \rightarrow(\mathrm{by} 1) \mathrm{a} \boldsymbol{\sigma} \mathrm{b} \boldsymbol{\beta} c \boldsymbol{\beta} \mathrm{abc} \S \rightarrow(\mathrm{by} 3) \mathrm{a} \boldsymbol{\sigma} \mathrm{b} \boldsymbol{\sigma c} \boldsymbol{\beta} \mathrm{abc} \S$
$\rightarrow($ by 3$)$ a σ bocoabc§ $\rightarrow($ by 4$)$ abocoabc§ $\rightarrow($ by 4$)$ abcoabc§ $\rightarrow($ by 4$)$ abcabc§ $\rightarrow($ by 5$)$ abcabc
Write a Markov algorithm to transform a binary number, e.g., " 101 " into a unary number represented as a series of tallies, e.g., "11111" that represents the binary number.

1.	$10 \rightarrow$	0 \|		$0,1, I$ are members of the alphabet	
2.	$1 \rightarrow$) I	λ is the null symbol		
3.	$0 \rightarrow$	λ			
input 101	\rightarrow	0101			
		00\|l1			
		00\|	10		
		0010III			
		000\|	IIII		
		001\|III			
		0\|IIII			
		\|IIII			

