CSE6339 3.0 Introduction to Computational Linguistics Insructor: Nick Cercone – 3050 LAS – <u>nick@cse.yorku.ca</u> Winter Semester, 2014 Markov Algorithms

Determine what the following Markov algorithm does and explain why it does not double a string. What change(s) would it take to make it double a string?

1.	ζηβ	\rightarrow	ηβζ	ζ , η are members of the alphabet
2.	αζ	\rightarrow	ζβζα	λ represents the null symbol
3.	β	\rightarrow	λ	α , β are markers
4.	α	\rightarrow	. λ	
5.	λ	\rightarrow	α	

The algorithm

e.g., $abc \rightarrow \alpha abc \rightarrow a\beta a\alpha bc \rightarrow a\beta ab\beta b\alpha c \rightarrow a\beta b\beta ab\alpha c \rightarrow a\beta b\beta abc\beta c\alpha \rightarrow a\beta b\beta ac\beta bc\alpha \rightarrow a\beta b\beta c\beta abc\alpha \rightarrow bc\beta aabc\alpha \rightarrow bc\beta aabc\alpha \rightarrow bcaabc$

To double or duplicate the string use the following Markov algorithm

1: [prod. schema]	$f \delta \beta \rightarrow$	δβ <i>f</i>	δ , <i>f</i> are members of the alphabet
2: [prod. schema]	$\{f \rightarrow$	<i>f</i> β <i>f</i> §	
3:	$\beta \rightarrow$	σ	
4:	$\sigma \rightarrow$	W	
5:	§ →	• <i>W</i>	
6:	$W \rightarrow$	§	
	1 (1 .) 0	- el (l 2)	

Write a Markov algorithm to transform a binary number, e.g., "101" into a unary number represented as a series of tallies, e.g., "11111" that represents the binary number.

1.	0 →	0	0, 1, are members of the alphabet
2.	1 →)	λ is the null symbol
3.	$0 \rightarrow$	λ	
input 101	→	0101	
input 101		00 1	
		001101	
		0010111	
		000	
		001111	
		OIIII	
		1111	