11-711 Algorithms for NLP

The Earley Parsing Algorithm

Reading:

Jay Earley,

"An Efficient Context-Free Parsing Algorithm"

Comm. of the ACM vol. 13 (2), pp. 94–102

The Earley Parsing Algorithm

General Principles:

- A clever hybrid Bottom-Up and Top-Down approach
- *Bottom-Up* parsing completely guided by *Top-Down* predictions
- Maintains sets of "dotted" grammar rules that:
 - Reflect what the parser has "seen" so far
 - Explicitly predict the rules and constituents that will combine into a complete parse
- Similar to Chart Parsing partial analyses can be shared
- Time Complexity $O(n^3)$, but better on particular sub-classes
- Developed prior to Chart Parsing, first efficient parsing algorithm for general context-free grammars.

The Earley Parsing Method

- Main Data Structure: The "state" (or "item")
- A state is a "dotted" rule and starting position: $[A \rightarrow X_1 \dots \bullet C \dots X_m, p_i]$
- The algorithm maintains sets of "states", one set for each position in the input string (starting from 0)
- We denote the set for position i by S_i

The Earley Parsing Algorithm

Three Main Operations:

- **Predictor:** If state $[A \to X_1 \dots \bullet C \dots X_m, j] \in S_i$ then for every rule of the form $C \to Y_1 \dots Y_k$, add to S_i the state $[C \to \bullet Y_1 \dots Y_k, i]$
- Completer: If state [A → X₁...X_m•, j] ∈ S_i then for every state in S_j of form [B → X₁...• A...X_k, l], add to S_i the state [B → X₁...A ...X_k, l]
- Scanner: If state $[A \to X_1 \dots \bullet a \dots X_m, j] \in S_i$ and the next input word is $x_{i+1} = a$, then add to S_{i+1} the state $[A \to X_1 \dots a \bullet \dots X_m, j]$

The Earley Recognition Algorithm

- Simplified version with no lookaheads and for grammars without epsilon-rules
- Assumes input is string of grammar terminal symbols
- We extend the grammar with a new rule $S' \rightarrow S$ \$
- The algorithm sequentially constructs the sets S_i for 0 ≤ i ≤ n + 1
- We initialize the set S_0 with $S_0 = \{ [S' \rightarrow \bullet S \ \$, 0] \}$

The Earley Recognition Algorithm

The Main Algorithm: parsing input $x = x_1...x_n$

- 1. $S_0 = \{ [S' \to \bullet S \ \$, 0] \}$
- 2. For $0 \le i \le n$ do:

Process each item $s \in S_i$ in order by applying to it the *single* applicable operation among:

- (a) Predictor (adds new items to S_i)
- (b) Completer (adds new items to S_i)
- (c) Scanner (adds new items to S_{i+1})
- 3. If $S_{i+1} = \phi$, *Reject* the input
- 4. If i = n and $S_{n+1} = \{ [S' \rightarrow S \$ \bullet, 0] \}$ then *Accept* the input

The Grammar:

(1)
$$S \rightarrow NPVP$$

(2) $NP \rightarrow art adj n$
(3) $NP \rightarrow art n$
(4) $NP \rightarrow adj n$
(5) $VP \rightarrow aux VP$
(6) $VP \rightarrow v NP$

The original input: "x = The large can can hold the water" POS assigned input: "x = art adj n aux v art n" Parser input: "x = art adj n aux v art n \$"

The input: "x = art adj n aux v art n \$"

$$S_{0}: [S' \to \bullet S \$, 0]$$
$$[S \to \bullet NP VP, 0]$$
$$[NP \to \bullet art adj n, 0]$$
$$[NP \to \bullet art n, 0]$$
$$[NP \to \bullet adj n, 0]$$

$$S_{1}: [NP \to art \bullet adj \ n \ , \ \mathbf{0}]$$
$$[NP \to art \bullet n \ , \ \mathbf{0}]$$

The input: " $x = \operatorname{art} \operatorname{adj} n \operatorname{aux} v \operatorname{art} n$ \$"

$$S_{1}: [NP \to art \bullet adj \ n \ , \ \mathbf{0}]$$
$$[NP \to art \bullet n \ , \ \mathbf{0}]$$

$$S_2$$
: $[NP \rightarrow art \ adj \ \bullet n \ , \ \mathbf{0}]$

The input: " $x = \operatorname{art} \operatorname{adj} \mathbf{n} \operatorname{aux} \mathbf{v} \operatorname{art} \mathbf{n}$ \$"

$$S_2: [NP \rightarrow art \ adj \ \bullet n \ , \ \mathbf{0}]$$

$$S_3: [NP \rightarrow art adj \ n \bullet, 0]$$

The input: "x = art adj n aux v art n\$"

$$S_{3}: [NP \rightarrow art \ adj \ n \bullet, 0]$$
$$[S \rightarrow NP \bullet VP, 0]$$
$$[VP \rightarrow \bullet aux \ VP, 3]$$
$$[VP \rightarrow \bullet v \ NP, 3]$$

 S_4 : $[VP \rightarrow aux \bullet VP, \mathbf{3}]$

The input: " $x = \text{art adj n aux } \mathbf{v} \text{ art n }$ "

$$S_{4}: [VP \to aux \bullet VP, \mathbf{3}]$$
$$[VP \to \bullet aux VP, \mathbf{4}]$$
$$[VP \to \bullet v NP, \mathbf{4}]$$

$$S_5: [VP \to v \bullet NP, 4]$$

The input: "x = art adj n aux v art n\$"

$$S_{5}: [VP \rightarrow v \bullet NP, 4]$$
$$[NP \rightarrow \bullet art \ adj \ n, 5]$$
$$[NP \rightarrow \bullet art \ n, 5]$$
$$[NP \rightarrow \bullet adj \ n, 5]$$

$$S_{6}: [NP \to art \bullet adj \ n \ , \ \mathbf{5}]$$
$$[NP \to art \bullet n \ , \ \mathbf{5}]$$

The input: " $x = \text{art adj n aux v art } \mathbf{n}$ \$"

$$S_{6}: [NP \to art \bullet adj \ n \ , \ \mathbf{5}]$$
$$[NP \to art \bullet n \ , \ \mathbf{5}]$$

$$S_7$$
: $[NP \rightarrow art \ n \bullet, 5]$

The input: " $x = \operatorname{art} \operatorname{adj} n \operatorname{aux} v \operatorname{art} n$ \$"

$$S_{7}: [NP \rightarrow art \ n \bullet, 5]$$
$$[VP \rightarrow v \ NP \bullet, 4]$$
$$[VP \rightarrow aux \ VP \bullet, 3]$$
$$[S \rightarrow NP \ VP \bullet, 0]$$
$$[S' \rightarrow S \bullet \$, 0]$$

$$S_8: [S' \to S \$ \bullet, 0]$$

Time Complexity of Earley Algorithm

- Algorithm iterates for each word of input (i.e. *n* iterations)
- How many items can be created and processed in S_i ?
 - Each item in S_i has the form $[A \rightarrow X_1 \dots \bullet C \dots X_m, j]$, $0 \le j \le i$
 - Thus O(n) items
- The Scanner and Predictor operations on an item each require constant time
- The Completer operation on an item adds items of form
 [B → X₁...A ...X_k, l] to S_i, with 0 ≤ l ≤ i, so it may require up
 to O(n) time for each processed item
- Time required for each iteration (S_i) is thus $O(n^2)$
- Time bound on entire algorithm is therefore $O(n^3)$

Time Complexity of Earley Algorithm

Special Cases:

- Completer is the operation that may require $O(i^2)$ time in iteration i
- For unambiguous grammars, Earley shows that the completer operation will require at most O(i) time
- Thus time complexity for unambiguous grammars is $O(n^2)$
- For some grammars, the number of items in each S_i is bounded by a *constant*
- These are called *bounded-state* grammars and include even some ambiguious grammars.
- For bounded-state grammars, the time complexity of the algorithm is linear O(n)

Parsing with an Earley Parser

- As usual, we need to keep back-pointers to the constituents that we combine together when we complete a rule
- Each item must be extended to have the form $[A \rightarrow X_1(pt_1)... \bullet C...X_m, j]$, where the pt_i are "pointers" to the already found RHS sub-constituents
- At the end reconstruct parse from the "back-pointers"
- To maintain efficiency we must do ambiguity packing

The input: " $x = \operatorname{art} \operatorname{adj} n \operatorname{aux} v \operatorname{art} n$ \$"

The input: "x = art adj n aux v art n \$"

$$S_{0}: [S' \to \bullet S \$, 0]$$
$$[S \to \bullet NP VP, 0]$$
$$[NP \to \bullet art adj n, 0]$$
$$[NP \to \bullet art n, 0]$$
$$[NP \to \bullet adj n, 0]$$

$$S_{1}: [NP \to art_{1} \bullet adj \ n \ , \ \mathbf{0}] \qquad \mathbf{1} \quad art$$
$$[NP \to art_{1} \bullet n \ , \ \mathbf{0}]$$

The input: " $x = \operatorname{art} \operatorname{adj} n \operatorname{aux} v \operatorname{art} n$ \$"

$$S_{1}: [NP \to art_{1} \bullet adj \ n \ , \ \mathbf{0}]$$
$$[NP \to art_{1} \bullet n \ , \ \mathbf{0}]$$

$$S_2$$
: $[NP \rightarrow art_1 adj_2 \bullet n, 0]$ 2 adj

The input: " $x = \text{art adj } \mathbf{n} \text{ aux } \mathbf{v} \text{ art } \mathbf{n}$ \$"

 S_2 : $[NP \rightarrow art_1 adj_2 \bullet n, 0]$

$$S_3: [NP_4 \rightarrow art_1 adj_2 n_3 \bullet, 0] \qquad \begin{array}{c} \mathbf{3} \quad n \\ \mathbf{4} \quad NP \rightarrow art_1 adj_2 n_3 \end{array}$$

The input: "x = art adj n aux v art n\$"

$$S_{3}: [NP_{4} \rightarrow art_{1} adj_{2} n_{3} \bullet, 0]$$
$$[S \rightarrow NP_{4} \bullet VP, 0]$$
$$[VP \rightarrow \bullet aux VP, 3]$$
$$[VP \rightarrow \bullet v NP, 3]$$

$$S_4: [VP \to aux_5 \bullet VP, \mathbf{3}] \qquad 5 \quad aux$$

The input: " $x = \operatorname{art} \operatorname{adj} n \operatorname{aux} \mathbf{v} \operatorname{art} n$ \$"

$$S_{4}: [VP \rightarrow aux_{5} \bullet VP, \mathbf{3}]$$
$$[VP \rightarrow \bullet aux VP, \mathbf{4}]$$
$$[VP \rightarrow \bullet v NP, \mathbf{4}]$$

S₅:
$$[VP \to v_6 \bullet NP, 4]$$
 6 v

The input: "x = art adj n aux v art n\$"

$$S_{5}: [VP \rightarrow v_{6} \bullet NP, 4]$$
$$[NP \rightarrow \bullet art \ adj \ n, 5]$$
$$[NP \rightarrow \bullet art \ n, 5]$$
$$[NP \rightarrow \bullet adj \ n, 5]$$

$$S_{6}: [NP \rightarrow art_{7} \bullet adj \ n \ , \ 5] \qquad 7 \quad art$$
$$[NP \rightarrow art_{7} \bullet n \ , \ 5]$$

The input: " $x = \text{art adj n aux v art } \mathbf{n}$ \$"

$$S_{6}: [NP \rightarrow art_{7} \bullet adj \ n \ , \ \mathbf{5}]$$
$$[NP \rightarrow art_{7} \bullet n \ , \ \mathbf{5}]$$

$$S_7$$
: $[NP_9 \rightarrow art_7 \ n_8 \bullet, 5]$

8 n9 $NP \rightarrow art_7 n_8$

The input: "x =art adj n aux v art n **\$**"

$$S_{7}: [NP_{9} \rightarrow art_{7} n_{8} \bullet, 5]$$
$$[VP_{10} \rightarrow v_{6} NP_{9} \bullet, 4]$$
$$[VP_{11} \rightarrow aux_{5} VP_{10} \bullet, 3]$$
$$[S_{12} \rightarrow NP_{4} VP_{11} \bullet, 0]$$
$$[S' \rightarrow S \bullet \$, 0]$$

- 10 $VP \rightarrow v_6 NP_9$
- 11 $VP \rightarrow aux_5 VP_{10}$

12
$$S \rightarrow NP_4 VP_{11}$$

 $S_8: [S' \rightarrow S \$ \bullet, 0]$