11-711 Algorithms for NLP

The Earley Parsing Algorithm

Reading:
Jay Earley,
"An Efficient Context-Free Parsing Algorithm"
Comm. of the ACM vol. 13 (2), pp. 94-102

The Earley Parsing Algorithm

General Principles:

- A clever hybrid Bottom-Up and Top-Down approach
- Bottom-Up parsing completely guided by Top-Down predictions
- Maintains sets of "dotted" grammar rules that:
- Reflect what the parser has "seen" so far
- Explicitly predict the rules and constituents that will combine into a complete parse
- Similar to Chart Parsing - partial analyses can be shared
- Time Complexity $O\left(n^{3}\right)$, but better on particular sub-classes
- Developed prior to Chart Parsing, first efficient parsing algorithm for general context-free grammars.

The Earley Parsing Method

- Main Data Structure: The "state"(or "item")
- A state is a "dotted" rule and starting position: $\left[A \rightarrow X_{1} \ldots \bullet C \ldots X_{m}, p_{i}\right]$
- The algorithm maintains sets of "states", one set for each position in the input string (starting from 0)
- We denote the set for position i by S_{i}

The Earley Parsing Algorithm

Three Main Operations:

- Predictor: If state $\left[A \rightarrow X_{1} \ldots \bullet C \ldots X_{m}, j\right] \in S_{i}$ then for every rule of the form $C \rightarrow Y_{1} \ldots Y_{k}$, add to S_{i} the state $\left[C \rightarrow \bullet Y_{1} \ldots Y_{k}, i\right]$
- Completer: If state $\left[A \rightarrow X_{1} \ldots X_{m} \bullet, j\right] \in S_{i}$ then for every state in S_{j} of form $\left[B \rightarrow X_{1} \ldots \bullet A \ldots X_{k}, l\right]$, add to S_{i} the state $\left[B \rightarrow X_{1} \ldots A \bullet \ldots X_{k}, l\right]$
- Scanner: If state $\left[A \rightarrow X_{1} \ldots \bullet a \ldots X_{m}, j\right] \in S_{i}$ and the next input word is $x_{i+1}=a$, then add to S_{i+1} the state $\left[A \rightarrow X_{1} \ldots a \bullet \ldots X_{m}, j\right]$

The Earley Recognition Algorithm

- Simplified version with no lookaheads and for grammars without epsilon-rules
- Assumes input is string of grammar terminal symbols
- We extend the grammar with a new rule $S^{\prime} \rightarrow S \$$
- The algorithm sequentially constructs the sets S_{i} for $0 \leq i \leq n+1$
- We initialize the set S_{0} with $S_{0}=\left\{\left[S^{\prime} \rightarrow \bullet S \$, 0\right]\right\}$

The Earley Recognition Algorithm

The Main Algorithm: parsing input $x=x_{1} \ldots x_{n}$

1. $S_{0}=\left\{\left[S^{\prime} \rightarrow \bullet S \$, 0\right]\right\}$
2. For $0 \leq i \leq n$ do:

Process each item $s \in S_{i}$ in order by applying to it the single applicable operation among:
(a) Predictor (adds new items to S_{i})
(b) Completer (adds new items to S_{i})
(c) Scanner (adds new items to S_{i+1})
3. If $S_{i+1}=\phi$, Reject the input
4. If $i=n$ and $S_{n+1}=\left\{\left[S^{\prime} \rightarrow S \$ \bullet, 0\right]\right\}$ then Accept the input

Earley Recognition - Example

The Grammar:

$$
\begin{aligned}
(1) S & \rightarrow \text { NPVP } \\
\text { (2) } N P & \rightarrow \text { artadj } n \\
\text { (3) } N P & \rightarrow \text { art } n \\
\text { (4) } N P & \rightarrow \text { adj } n \\
\text { (5) } V P & \rightarrow \text { aux } V P \\
\text { (6) } V P & \rightarrow v N P
\end{aligned}
$$

The original input: " $x=$ The large can can hold the water" POS assigned input: " $x=$ art adj n aux v art n "
Parser input: " $x=$ art adj n aux v art $\mathrm{n} \$$ "

Earley Recognition - Example

The input: " $x=$ art adj n aux vart $\mathrm{n} \$$ "

$$
\begin{aligned}
S_{0}: & {\left[S^{\prime} \rightarrow \bullet S \$, 0\right] } \\
& {[S \rightarrow \bullet N P V P, 0] } \\
& {[N P \rightarrow \bullet \operatorname{art} \operatorname{adj} n, 0] } \\
& {[N P \rightarrow \bullet \operatorname{art} n, 0] } \\
& {[N P \rightarrow \bullet \operatorname{adj} n, 0] }
\end{aligned}
$$

$$
\begin{aligned}
S_{1}: & {[N P \rightarrow \text { art } \bullet \operatorname{adj} n, 0] } \\
& {[N P \rightarrow \text { art } \bullet n, 0] }
\end{aligned}
$$

Earley Recognition - Example

The input: " $x=\operatorname{art} \operatorname{adj} \mathrm{n}$ aux v art $\mathrm{n} \$$ "

$$
\begin{aligned}
S_{1}: & {[N P \rightarrow \operatorname{art} \bullet \operatorname{adj} n, 0] } \\
& {[N P \rightarrow \text { art } \bullet n, 0] }
\end{aligned}
$$

$S_{2}: \quad[N P \rightarrow \operatorname{art} \operatorname{adj} \bullet n, 0]$

Earley Recognition - Example

The input: " $x=$ art adj \mathbf{n} aux vart $\mathrm{n} \$$ "
$S_{2}: \quad[N P \rightarrow \operatorname{art} \operatorname{adj} \bullet n, 0]$
$S_{3}: \quad[N P \rightarrow \operatorname{art} \operatorname{adj} n \bullet, 0]$

Earley Recognition - Example

The input: " $x=\operatorname{art} \operatorname{adj} \mathrm{n}$ aux vart $\mathrm{n} \$$ "

$$
\begin{aligned}
S_{3}: & {[N P \rightarrow \text { art adj } n \bullet, 0] } \\
& {[S \rightarrow N P \bullet V P, 0] } \\
& {[V P \rightarrow \bullet \text { aux } V P, 3] } \\
& {[V P \rightarrow \bullet v N P, 3] }
\end{aligned}
$$

$S_{4}: \quad[V P \rightarrow a u x \bullet V P, 3]$

Earley Recognition - Example

The input: " $x=$ art adj n aux \mathbf{v} art $\mathrm{n} \$$ "

$$
\begin{aligned}
S_{4}: & {[V P \rightarrow \text { aux } \bullet V P, 3] } \\
& {[V P \rightarrow \bullet \text { aux } V P, 4] } \\
& {[V P \rightarrow \bullet v N P, 4] }
\end{aligned}
$$

$S_{5}: \quad[V P \rightarrow v \bullet N P, 4]$

Earley Recognition - Example

The input: " $x=\operatorname{art} \operatorname{adj} \mathrm{n}$ aux v art $\mathrm{n} \$$ "

$$
\begin{aligned}
S_{5}: & {[V P \rightarrow v \bullet N P, 4] } \\
& {[N P \rightarrow \bullet \text { art adj } n, 5] } \\
& {[N P \rightarrow \bullet \text { art } n, 5] } \\
& {[N P \rightarrow \bullet \text { adj } n, 5] }
\end{aligned}
$$

```
\(S_{6}: \quad[N P \rightarrow\) art •adj \(n, 5]\)
\([N P \rightarrow\) art \(\bullet n, 5]\)
```


Earley Recognition - Example

The input: " $x=$ art adj n aux v art $\mathbf{n} \$$ "

$$
\begin{aligned}
S_{6}: & {[N P \rightarrow \operatorname{art} \bullet \operatorname{adj} n, 5] } \\
& {[N P \rightarrow \text { art } \bullet n, 5] }
\end{aligned}
$$

$S_{7}:[N P \rightarrow \operatorname{art} n \bullet, 5]$

Earley Recognition - Example

The input: " $x=$ art adj n aux v art n \$"

$$
\begin{aligned}
S_{7}: & {[N P \rightarrow \text { art } n \bullet, 5] } \\
& {[V P \rightarrow v N \bullet, 4] } \\
& {[V P \rightarrow \text { aux } V P \bullet, 3] } \\
& {[S \rightarrow N P V P \bullet, 0] } \\
& {\left[S^{\prime} \rightarrow S \bullet \$, 0\right] }
\end{aligned}
$$

$S_{8}:\left[S^{\prime} \rightarrow S \$ \bullet, 0\right]$

Time Complexity of Earley Algorithm

- Algorithm iterates for each word of input (i.e. n iterations)
- How many items can be created and processed in S_{i} ?
- Each item in S_{i} has the form $\left[A \rightarrow X_{1} \ldots \bullet C \ldots X_{m}, j\right]$, $0 \leq j \leq i$
- Thus $O(n)$ items
- The Scanner and Predictor operations on an item each require constant time
- The Completer operation on an item adds items of form [$\left.B \rightarrow X_{1} \ldots A \bullet \ldots X_{k}, l\right]$ to S_{i}, with $0 \leq l \leq i$, so it may require up to $O(n)$ time for each processed item
- Time required for each iteration $\left(S_{i}\right)$ is thus $O\left(n^{2}\right)$
- Time bound on entire algorithm is therefore $O\left(n^{3}\right)$

Time Complexity of Earley Algorithm

Special Cases:

- Completer is the operation that may require $O\left(i^{2}\right)$ time in iteration i
- For unambiguous grammars, Earley shows that the completer operation will require at most $O(i)$ time
- Thus time complexity for unambiguous grammars is $O\left(n^{2}\right)$
- For some grammars, the number of items in each S_{i} is bounded by a constant
- These are called bounded-state grammars and include even some ambiguious grammars.
- For bounded-state grammars, the time complexity of the algorithm is linear - $O(n)$

Parsing with an Earley Parser

- As usual, we need to keep back-pointers to the constituents that we combine together when we complete a rule
- Each item must be extended to have the form $\left[A \rightarrow X_{1}\left(p t_{1}\right) \ldots \bullet C \ldots X_{m}, j\right]$, where the $p t_{i}$ are "pointers" to the already found RHS sub-constituents
- At the end - reconstruct parse from the "back-pointers"
- To maintain efficiency - we must do ambiguity packing

Earley Parsing - Example

The input: " $x=$ art adj n aux v art $\mathrm{n} \$$ "

Earley Parsing - Example

The input: " $x=$ art adj n aux vart n ""

$$
\begin{aligned}
S_{0}: & {\left[S^{\prime} \rightarrow \bullet S \$, 0\right] } \\
& {[S \rightarrow \bullet N P V P, 0] } \\
& {[N P \rightarrow \bullet \text { art adj } n, 0] } \\
& {[N P \rightarrow \bullet \operatorname{art} n, 0] } \\
& {[N P \rightarrow \bullet \operatorname{adj} n, 0] }
\end{aligned}
$$

```
\(S_{1}:\left[N P \rightarrow\right.\) art \(\left._{1} \bullet \operatorname{adj} n, 0\right]\)
1 art
    \(\left[N P \rightarrow a r t_{1} \bullet n, 0\right]\)
```


Earley Parsing - Example

The input: " $x=$ art adj n aux v art $\mathrm{n} \$$ "

$$
\begin{aligned}
S_{1}: & {\left[N P \rightarrow \operatorname{art}_{1} \bullet \operatorname{adj} n, 0\right] } \\
& {\left[N P \rightarrow \operatorname{art}_{1} \bullet n, 0\right] }
\end{aligned}
$$

$S_{2}: \quad\left[N P \rightarrow\right.$ art $_{1}$ adj $\left.{ }_{2} \bullet n, 0\right]$ 2 adj

Earley Parsing - Example

The input: " $x=$ art adj \mathbf{n} aux vart $\mathrm{n} \$$ "
$S_{2}: \quad\left[N P \rightarrow\right.$ art $\left._{1} \operatorname{adj} j_{2} \bullet n, 0\right]$

$$
\begin{array}{ll}
S_{3}:\left[N P_{4} \rightarrow \operatorname{art}_{1} \operatorname{adj}_{2} n_{3} \bullet, 0\right] & 3 n \\
& 4 N P \rightarrow \operatorname{art}_{1} \operatorname{adj}_{2} n_{3}
\end{array}
$$

Earley Parsing - Example

The input: " $x=\operatorname{art} \operatorname{adj} \mathrm{n}$ aux v art $\mathrm{n} \$$ "

$$
\begin{aligned}
S_{3}: & {\left[N P_{4} \rightarrow \text { art }_{1} \text { adj }_{2} n_{3} \bullet, 0\right] } \\
& {\left[S \rightarrow N P_{4} \bullet V P, 0\right] } \\
& {[V P \rightarrow \bullet \text { aux } V P, 3] } \\
& {[V P \rightarrow \bullet v P, 3] }
\end{aligned}
$$

$S_{4}: \quad\left[V P \rightarrow a u x_{5} \bullet V P, 3\right]$
5 aux

Earley Parsing - Example

The input: " $x=$ art adj n aux \mathbf{v} art $\mathrm{n} \$$ "

$$
\begin{aligned}
S_{4}: & {\left[V P \rightarrow a_{0} \bullet V P, 3\right] } \\
& {[V P \rightarrow \bullet a u x V P, 4] } \\
& {[V P \rightarrow \bullet v N P, 4] }
\end{aligned}
$$

$$
S_{5}:\left[V P \rightarrow v_{6} \bullet N P, 4\right] \quad 6 v
$$

Earley Parsing - Example

The input: " $x=\operatorname{art} \operatorname{adj} \mathrm{n}$ aux v art $\mathrm{n} \$$ "

$$
\begin{aligned}
S_{5}: & {\left[V P \rightarrow v_{6} \bullet N P, 4\right] } \\
& {[N P \rightarrow \bullet \text { art adj } n, 5] } \\
& {[N P \rightarrow \bullet \text { art } n, 5] } \\
& {[N P \rightarrow \bullet \text { adj } n, 5] }
\end{aligned}
$$

```
\(S_{6}:\left[N P \rightarrow \operatorname{art}_{7} \bullet \operatorname{adj} n, 5\right]\) 7 art \(\left[N P \rightarrow \operatorname{art}_{7} \bullet n, 5\right]\)
```


Earley Parsing - Example

The input: " $x=$ art adj n aux v art $\mathbf{n} \$$ "

$$
\begin{aligned}
S_{6}: & {\left[N P \rightarrow \operatorname{art}_{7} \bullet \text { adj } n, 5\right] } \\
& {\left[N P \rightarrow \text { art }_{7} \bullet n, 5\right] }
\end{aligned}
$$

$S_{7}: \quad\left[N P_{9} \rightarrow \operatorname{art}_{7} n_{8} \bullet, 5\right]$

$$
\begin{array}{ll}
8 & n \\
9 & N P \rightarrow a r t_{7} n_{8}
\end{array}
$$

Earley Parsing - Example

The input: " $x=$ art adj n aux v art $\mathrm{n} \$$ "

```
\(S_{7}:\left[N P_{9} \rightarrow\right.\) art \(\left._{7} n_{8} \bullet, 5\right]\)
    \(\left[V P_{10} \rightarrow v_{6} N P_{9} \bullet, 4\right]\)
    \(10 V P \rightarrow v_{6} N P_{9}\)
    \(\left[V P_{11} \rightarrow a u x_{5} V P_{10} \bullet, 3\right]\)
\(\left[S_{12} \rightarrow N P_{4} V P_{11} \bullet, 0\right]\)
\(\left[S^{\prime} \rightarrow S \bullet \$, 0\right]\)
```

$S_{8}:\left[S^{\prime} \rightarrow S \$ \bullet, 0\right]$

