
Appl. Math. Lat. Vol. 2, No. 3. pp. 287-291. 1989 0893-%59/89 S3.00 + 0.00

Printed in Great Britain Maxwell Pergamon Macmillan plc

An Informal Analysis of Perfect Hash Function Search

Nra< CERCONE MAX KRAUSE
School of Computing Science MacDonald Detwiller and Associates

Simon Fraser University 3751 Shell Road
Bumaby, British Columbia, Canada Richmond, British Columbia, Canada

Abstract. A brief explanation of perfect hash function search is presented followed by an in-
formal analysis of the problem.

1. I.N~~DIJCTION

Given a set of N keys and a hash table of size r 2 N. a perfect hash function maps the
keys into unique hash table addresses. The hash table loading factor &Fj is the ratio of the
number of keys to the table size N/r. A minimal perfect hush function maps N keys into N
contiguous locations for a LF of one. Weiderhold [I] distinguishes deterministic and proba-
bilistic direct access methods. Perfect hash functions are deterministic and do not permit
collisions, thus guaranteeing single probe retrieval.

Perfect hash functions are difficult to find, even when almost minimal solutions are
accepted. Knuth [2] estimates that only one in 10 million functions is a perfect hash function
for mapping the 31 most frequently used English words into 41 addresses. Cichelli [3] devised
an algorithm for computing machine independent, minimal perfect hash functions of the form:

hash value = hash key length + associated value of the key’sfirst letter
+ associated value of the keys last letter

Cichelli’s machine independent hash function algorithm incorporates a two-stage ordering
procedure for keys which effectively reduces the the size of the search for associated values but
excessive computation is still required to find hash functions for sets of more than 40 keys.
Cichelli’s method is also limited since two keys with the same fust and last letters and the
same length are not permitted.

2. CICHELLI’S ALGORITHM

The following is an outline of Cichelli’s perfect hash function algorithm.

Algorithm 0
step1 :

step2:

step3:

step4:

compare each key against the rest. If two keys have the same first and last letters
and the same length, report conflict and stop; otherwise continue.
order the keys by non-increasing sum of frequencies of occurrence of first and last
letters.
reorder the keys from the beginning of the list so that if a key has fust and last
letters which have appeared previously in the list, then that key is placed next in
the list.
add one word at a time to the solution, checking for hash value conflicts at each
step. If a conflict occurs, go back to the previous word and vary its associated
values until it is placed in the hash table successfully, then add the next word.

We now give an informal analysis of the complexity of Cichelli’s algorithm.
step1 :

step2:

as formulated here, this is an O(N2) computation. The same check can be made by
isolating and sorting the first and last letter for each key, then sorting the N keys
into lexicographical order on these sets of isolated letters. We can then make one
pass through the keys comparing neighboring keys for matching groups of isolated
letters. The cost of this procedure would then be dominated by the cost of the
lexicographical sort, which can be done in time proportional to N log2 N.
this initial ordering tallies the frequency of occurrence of first and last letters, which
requires one pass over the N keys. A second pass is then made to calculate the sum
of frequencies of each key. Sorting the keys into decending order of this sum, the
dominant cost of this step, requires time proportional to N log2 N.

Typeset by A&-T@

257

288 N. CERCONE, M. KRAUSE

srep3: the second ordering is an O(N*) heuristic. As each key is added to the new ordering,
the remaining keys in the old ordering are scanned to decide which, if any, of them
now have their hash values determined. This may require (N-l)*(N-2)/2 operations.

srep4: despite the tendency of the two orderings to reduce the search, for most sets of keys,
the backtracking phase of this algorithm is the most expensive. An average case
complexity measure is difficult to calculate; Simon and I&lane [4] estimate an
average search to include about one-half the total search space, giving a casual
estimate of O(m*/2), where m is the size of the domain of values for each letter and
s is the number of letters which occur in first or last position.

Cichelli’s algorithm uses key length and the first and last letters (without regard to letter
position) as the hash identifier. The number of keys which can be distinguished is restricted to
P*CH(A,2) where P is the maximum key length, CH is the familiar choose function, and A
is the cardinality of the alphabet. Integer assignment values are found using a simple
backtracking process. Cichelli proposes no method of choosing a value of m, the size of the
domain of associated letter values. This is an important parameter of the problem since m is
the branching factor of the backtrack search tree.

We have found that the time required to find a perfect hash function using this method
varies greatly, depending less on the number of keys in the problem set than on the relation-
ships among keys in terms of shared letters, Krause [S]. Because Cichelli’s algorithm relies on
a relatively uninformed exhaustive search of the solution space, the cost of finding a solution
can be quite high. This, in turn, limits the maximum size of the problem sets to which the
algorithm can be applied.

We next present an informal analysis of the nature of the problem. This analysis leads to
some methods for overcoming the limitations of Cichelli’s strategy while permitting us to re-
tain its benefits.

.
3.AN INF~~~MALANALYSISOFTHEPR~B~~~

We identify four subproblems: (1) choosing a set of formal properties of the keys to be
used in the hashing ftlnction; (2) choosing a method of searching the space of possible
solutions; (3) ordering the search variables to improve the performance of the search method;
and (4) finding ways of enforcing a reasonable degree of minimality of the solution.

Choosing Hash Identifiers
Akey is identified to be a sequence of length no greater than P, made up of symbols from

alphabet A. We assume that A has a lexicographical ordering defined on it. T, a space of
possible keys, is determined by a given P and A. If T = card

T=AP+AP-l + crb
and A = card(A), then

. . . + A = pi A’ (llilp) = A*(A -l)/(A-1) = @(A’)
as A becomes large. When A becomes arbitrarily large, the limit of A&A-l) approaches 1,
reducing the resultant factor Ap-1 to Ap. Thus T grows at a rate polynomial in A and ex:
ponential in P. For example, consider A = the 26 lower case Roman letters and P=6; T=x26l
= 3.2* lo*.

Left0 Order in Keys
The number of keys which can be distinguished when the set of properties which are used

as hash identifiers are not ordered is given by the expression CH(A+i-1.1). (l<i<P), where
CH(n,m) is the familiar choose function, defined as CH(n,m) = n!/(m!*(n-m)!). If A=26 and
P=6, then the size of the key space is

CH(A+i-l,l), (l%P) = CH(26,1)+CH(27,2)+...+CH(31,6) = 906,091 - 9*105.
Compare this number with 3.2* lo8 distinguishable keys for the same values of A and P when
the order of occurrence is taken into account. Without ordering, only about one in 350 keys in
this example key space can be distinguished.

An Informal Analysis of Perfect Hash Function Search 289

Hash Identifiers
We propose Algorithm I to incorporate a procedure which automatically chooses, for each

subset of keys of the same length, the smallest set of letter positions which distinguishes each
key, when the order of occurrence of letters within a key is disregarded [5]. Since each letter has
one associated value regardless of its position of occurrence, a key’s hash address is determined
by the combination of letters in chosen positions. The number of different (unordered) subsets
of letters is much smaller than the key space with the same maximum length, so the number
of subsets of the key space which can be processed via Algorithm 1 is restricted. To keep the
search for, and subsequent use of, a perfect hash function as simple as possible, we select the
smallest subset of P letter positions in keys of length P which distinguish each of the given
keys. The limit on the number of keys which can be distinguished using only one letter
position is A. It may be possible to distinguish up to A2 keys with two chosen letter
positions, but only if ab#ba. In algorithm 1 this distinction is not made, which reduces the
number of different keys which can be recognized by this method to A(A-I)/2 when two letter
positions are chosen.

Algorithm 3, called algorithm cbk in [6]. relies interactively on human judgment to
choose a set of charac-teristics for the hash function. It also takes into account the position of
occurrence of letters and thus has the greatest possible discriminatory power.

Assignment of Associated Letter Values

An efficient search of integer assignment of values to letters which map the keys into the
hash table is necessary to find an acceptable solution in reasonable time. If we view the search
space as a tree, as shown in Figure I, there is a path of polynomial cost from the root (initial
state of search) to each of an exponential number of possible solutions. In Figure 1, we have a
set of three keys (N=3), two letters from chosen positions (s=2) and a maximum associated
values of two (m=3, M=[0,1,23). The number of different assignments of integers to letters is
ms, the number of leaf nodes in the tree. At tree depth one, the letter ‘a’ is assigned a value
which determines the hash address of the key ‘aa’. At depth two, the assignment of a value to ‘b
determines the hash addresses of the keys ‘bb’ and ‘ab’. The problem is to find a path which
leads to an acceptable solution while generating as little as possible of the search tree, i.e., a
classical backtrack search.

Small search space where the set of $eys is (aa,ab,bb), L=2, M=N=3, and the letters are ordered
ca,bx The leaf nodes are the ms3 4 possible combinations of associated values. Minimal
solutions are cO,l>, cl,O>, 4,2>, and c2,1>, non-minimal ones are <0,2> and <2,0x

Figure 1. Small example of the search space.

Importance of Variable Ordering
For perfect hash function search, the criterion for backtracking, call it predicate Q, can be

defined as: given an assignment of values <xl ,...,xn> to the variables <al....,an>, define
Q(xl ,...,xn) = False if there exist kil kj, izj, in K such that for both keys, all

letters in chosen positions are in cal,...,a,> and H(Ki)=H(Kj).
= True otherwise.

When Q(q ,...,xn) is True, then <xl ,...,xn> represents a perfect hash function for the subset of
keys in K for which H now has a value (those for which all letters in selected positions have
been assigned a value). The backtrack condition Q(x 1 ,...,xn) demands that no two keys have the

290 K. CERCONE, XI. KRAUSE

same hash address. In order to test the predicate efficiently we keep an array of possible hash
addresses where we record which addresses are occupied by keys whose chosen letters have been
assigned values previously. When no letter values have been assigned, Q is vacuously true.
Suppose that Q(x1 ,...,xi_l) is satisfied: extending the solution to Q(xl,...,xi_l,xi) involves
two steps: (1) a value Xi is assigned to ai; and (2) the set of “new” keys, whose hash addresses
are dependent on letters which are all found in al,..., ai must have their hash addresses ~akulated

and compared with the present state of the hash table. If we let di denote the number of keys for
which ai is the last chosen letter to be assigned a value, then each ordering of the letters will,
in general, produce a different vector of values cdl,...,ds>. The sum of these di, llils, is N,
the number of keys in the problem set. If we assign unit cost to generating the next trial value
for a variable, then the cost of generating the entire tree is the number of nodes in the tree.

The number of nodes in a complete tree with depth s and branching factor m is the sum of
the number of nodes at each level in the tree, where the root is at level 0:

C = Cmi, IS&s , = m*(ms-l)/(m-1) = O(mS+l) = O(mS) as m + infinity
In our appl?%ion, s is the number of letters to be assigned values and m represents the number
of values in the domain of each variable, M=[O...m-11.

The choice of m is therefore critical since the size of the domain from which associated
values are chosen determines the branching factor of the search tree. If m is set too small, there
may be no solution to the problem set: if we set m’s value high enough, say infinity, we are
assured a solution exists, there is little reason to expect that a minimal solution will be the
first one found. In practice we have obtained impressive results by setting m to N although we
know of no analytic method of determining the optimal value for m given a set of keys.

In order to determine whether the current partial solution satisfies Q, one must perform dj
‘th tests at each attempt to extend the solution to the J letter. We can assign to each node at

depth j a cost of dj+l, the cost of generating the next value for aj plus dj times the (unit) cost
of testin
tree is Lg

the hash address. If j is defined as dj+l, then the cost of visiting every node in the
(cj*mJ)v l<j;i<s, which we consider the weighted cost tree lJ4’Cl-J. Each ordering of

the variables determines a (possibly different) value of WCT; we consider that ordering of the
variables which give the minimum WCT as the best ordering.

Ordering Search Variables
Given s search variables al ,...,as, what is the best ordering. Consider the permutation

B=cal,...+> and define D(B)=cdl ,...,d,> to give the number of keys di whose hash addresses
are newly determined when ai is assigned a value. Let C(B)=ccl.....cs> be D(B) with one added
to each di so that Ci is the cost of visiting any node at level i in the tree. We regard C(B) as, a
vector of coefficients for the series of mi terms, l<ils, which make up the WCT = (ci*m’),
llils , = co + cl*m + . . . + cs*ms. The initial term, with CO defined to be one (unit time
expense), is the cost of generating the root node of the search tree. Note the m factor in each of
the terms in the total cost is growing exponentially with its distance from the root.

Examining WCT convinces us that we want the smallest possible values assigned to the
coefficients in the order cs. cs_l ,..., c2, cl, where cs is as small as possible and cl is as large
as possible. We cannot have dscl, since at least one key has the last letter in the ordering as its
last letter to be assigned a value. The best we can find is a letter as which has a frequency count
of one so that it can be the determining value of only one key, giving cs a value of two.

We can show that ms is larger than the sum of the remaining terms in the polynomial
which describes the size of the search tree [5]. Since ms will contribute most of the cost of the
tree, its coefficient in the WCT must be the smallest which occurs in any of the s! possible
permutations of the variables. We therefore want to find a key which has at least one unique
letter occurrence since it is only such a letter which can come last in the ordering and still place
a single key in the hash table.

A heuristic ordering strategy for the letters based on this observation would order the letters

An Informal Analysis of Perfect Hash Function Search 291

by frequency in non-increasing order, so that al would have the highest frequency of occurrence
and as would have the lowest. We find that this arrangement tends to occur when we first order
the keys by sum of letter frequencies, then from each key choose the letters which have not
occurred before in decreasing order of frequency of occurrence. The second ordering has the effect
of making the coefficients of the m factors of the cost equation increase for the smaller factors
and decrease for the larger m factors.

The optimal ordering of the search variables, Bmin=<al, az,..., as>, is that for which the
WCT is a minimum. If we were to generate all s! permutations of the letters, we would find
that the optimal ordering is that for which D(B), and therefore C(B), has the largest
lexicographical sort value.

We can approach the optimal ordering by examining far fewer than s! permutations. This
is accomplished by refining the second ordering, as suggested by Slingerland and Waugh [71,
such that “each sublist of words which have equal frequency counts be ordered such that the
words that will have the greatest second ordering effect, that is, words that will ‘expose’ the
most words from the rest of the list, occur first”. This is explained by our model, since at each
stage in the reordering process, we select the next key whose new letter will determine the
greatest number of hash addresses among those keys which have the highest current sum of
frequencies. This strategy tends to increase the coefficients of small m factors and thus decrease
the coefficients of large m factors, which, in turn, reduces the WCT.

Note that the WCT indicates only the size of the tree we are searching; it is a measure of
the worst case complexity when we seek only one acceptable solution. The greatest value of
the backtracking approach is that if we test the validity of all partial solutions, when we find
that a partial solution <xl ,.,.,xi> does not satisfy Q, we can prune the subtree which has Xi as
its root and avoid generating, for a value rejected at level i, c ml, lsjjls-1, full and partial
solutions which have cx 1, x2,...,

z Ccl+j

xi> as an initial segment. The cost of this rejected subtree is
*ml), lljls-1. Fortunately, the frequency of occurrence of a letter ai is an excellent

heuristic value for predicting how likely it is that ai occurs in a key which may collide with
other keys.

In general, we may conclude that any polynomial-cost analysis that can be performed
dynamically in the depth-first search which allows us to exclude from consideration values in
the domain of a search variable will be worth pursuing since an exponentially-growing subtree
will be pruned for each potential value we eliminate,

4. POSTSCRIPT

Remember, the ideal backtrack search is one that never backtracks. In order to achieve that
level of performance, the search must be organized in such a way that a choice made at any
stage of the search is known to be ultimately acceptable. We presented such a strategy in [5].

REFERENCES
[l] Weiderhold, G. (1977) Database Design, McGraw Hill, New York.

[2] Knuth, D. (1973) The Art of Computer Programming 3: Sorting and Searching, Addison-
Wesley, Reading, Massachusetts.

[3] Cichelli, R. (1980) lMinima1 Perfect Hash Functions Made Simple, CACM 23, 17-19.

[41 Simon, H.. and Kadane. J. (1976) Problems of Computational Complexity in Artificial Intelligence. in
J.F. Traub (ed.) Algorithms and Complexity, Academic Press, New York, 281-299.

I51 Krause, AM. (1982) Perfect Hash Function Search with Application to Computer Lexicon Design, M.Sc.

thesis, Computing Science, Simon Fraser University, Bumaby. B.C.

[6] Cercone, N. (1987) Finding and Applying Perfect Hash Functions. Applied ,Math Lets l(l), 25-29.

(71 Slingerland. J.. and Waugh, M. (1981) On Cichelli’s Algorithm for Finding Minimal Perfect Hash

Functions, CACM 24(5). 322.

