EECS6%%9 3.0 Introduction to Computa’cional Linguis‘cics
Instructor: Nick Cercone — 3050 LAS — nic|<.cercone@lassonde.yorku.ca
Tuesdays, Thursdays 10:00-11:20 — LAS 30%3
Winter Semester, 2015

NL Grammar Hierarchies

And Formal Languages

Quick Review of Regular
Expressions, Finite State
Automata, Markov
A[govithms
Representations of

Languages, Grammars

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 1

EECS6%%93.0 | ntroduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thurs&ags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Regulav Expressions (summary)

(empty set) @ denoting the set <.

(empty string) € denoting the set containing only the "empty" string, which has no
characters at all.

(literal character) a in Z denoting the set containing only the character a.

The following operations are defined:

(concatenation) RS denoting the set{ap | ain Rand B in S }. For example {"ab",
"c"H"d", "ef"} = {"abd", "abef", "cd", "cef"}.

(alternation) R | S denoting the set union of R and S. For example {"ab", "c"}|{"ab",
"d", "ef"} = {"ab", "c", "d", "ef"}.

(Kleene star) R* denoting the smallest superset of R that contains € and is closed
under string concatenation. This is the set of all strings that can be made by
concatenating any finite number (including zero) of strings from R. For example,
{"0","1"}* is the set of all finite binary strings (including the empty string), and {"ab",
"c"}* = {g, "ab", "c", "abab", "abc", "cab", "cc", "ababab", "abcab", ... }.

nothing else is a regular expression over)’

Instructor: Nick Cercone - 3050 LAS - nick@cse.yorku.ca

IN

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursdays 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Finite State Automata
Automata are models of computation: they compute languages.

A ﬁnite-state automaton is a ﬁve—tuple {Qzﬂo’ Y, 0, F}, where Yisa ﬁnite
set of alphabet symbols, Q_is a finite set of states, q, € Q_is the initial
state, F & Qis a set of final (accepting) states and 0 : Q x ¥ x Q_is a
relation from states and alphabet symbols to states.

Instructor: Nick Cercone - 3050 LAS - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguis’cics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursclags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Finite State Automata

Examp le: Finite-state automaton

Q= {qo, q1, 92, 93}

Y ={catr}

F=1g3}

0= {qo, c, 1> q1, 4 q2>, 92, t, 93>, 92, 7, q3>}

Instructor: Nick Cercone - 3050 LAS - nick@cse:yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursclays 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Finite State Automata

The Veﬂexive transitive extension of the transition relation O is a new relation, "0,

defined as follows:
— for every state q € Q, (g, €, q) €70

— for every stringw € Y and letter a €Y, if (q,w, q’) &0 and (q', a, q") E90
then (qw-a,q") €"0.

Instructor: Nick Cercone - 3050 LAS - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguis‘cics
Instructor: Nick Cercone — 3050 LAS — nic|<.cercone@lassoncle.gorku.ca
Tuesdays, Thursdays 10:00-11:20 — LAS 30%3
Winter Semester, 2015

Finite State Automata
Examp le: Paths

For the ﬁnite-state automaton:

"0 is the following set of triples:

qo, Q, qo>, q1, Q, q1>, q2, Q, 92>, 93, Q, 93>,
qo, ¢, 41>, q1, &, 42>, q2, t, 93>, 92, v, 43>,
qo, ca, q2>, q1, at, 3>, q1, ar, 43>,

qo, cat, q3>, qo, car , q3>

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

[op)

EECS6%%9 3.0 Introduction to Computational Linguis’cics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdays, Thursdays 10:00-11:20 — LAS 30%3
Winter Semester, 2015

Finite State Automata

An extension: E-moves.

The transition relation O is extended to:

0 S Qx(Y U {e})xQ_

Examp le: Automata with €-moves - an
automaton accepting the language {do,

undo, done, undone}:

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 7

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursclays 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Formal [anguage ’theory — deﬁniﬁons

If L is a language then the reversal of L, denoted LY, is the language {w | wk € L}
If L1 and L2 ave languages, then L1 - L2 = {w1 - w2 | w1 € Liand w2 € La}.
Example: Language operations
— LetLi={i you, he, she, it, we, they}, L2 = {smile, sleep}.
— ThenLi*={i, uoy, eh, ehs, ti, ew, yeht} and L1 - L2 = {ismile, yousmi[e, hesmile,
shesmile, itsmile, wesmile, ’cheysmi[e, is[eep, yous[eep, hes[eep, shesleep, i’cs[ee]o,

wesleep, theys[eep}.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

[oe]

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursclays 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Formal [anguage ’theory — deﬁniﬁons

If L is a language then the reversal of L, denoted LY, is the language {w | wk € L}
If L1 and L2 ave languages, then L1 - L2 = {w1 - w2 | w1 € Liand w2 € La}.
Example: Language operations
— LetLi={i you, he, she, it, we, they}, L2 = {smile, sleep}.
— ThenLi*={i, uoy, eh, ehs, ti, ew, yeht} and L1 - L2 = {ismile, yousmi[e, hesmile,
shesmile, itsmile, wesmile, ’cheysmi[e, is[eep, yous[eep, hes[eep, shesleep, i’cs[ee]o,

wesleep, theys[eep}.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursclays 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Formal [anguage ’theory — deﬁniﬁons

If L is a language then the reversal of L, denoted LY, is the language {w | wk € L}
If L1 and L2 ave languages, then L1 - L2 = {w1 - w2 | w1 € Liand w2 € La}.
Example: Language operations
— LetLi={i you, he, she, it, we, they}, L2 = {smile, sleep}.
— ThenLi*={i, uoy, eh, ehs, ti, ew, yeht} and L1 - L2 = {ismile, yousmi[e, hesmile,
shesmile, itsmile, wesmile, ’cheysmi[e, is[eep, yous[eep, hes[eep, shesleep, i’cs[ee]o,

wesleep, theys[eep}.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thurs&ays 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Formal [anguage ‘theory — deﬁnl’cions

IfLisa [anguage then L° = {€}.
Then, for i>o0,L'=L-L".
Examp le: Language exponentiation

Let L be the set of words {bau, haus, hof, ﬁrau}. Thenl°={e},L'=L
and L* = {baubau, bauhaus, bauhof, baufrau, hausbau, haushaus,

haushof, hausﬁfau, hoﬂoau, ’/lOﬂ’laULS, hoﬂnof, hoﬁifau, ﬁauloau,
ﬁauhaus, ﬁfauhof, ﬁauﬁau}.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca n

EECS6%%93.0 | ntroduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thurs&ags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Formal language theory — deﬁni‘cions
The Kleene closure of L and is denoted L* and is defined as U>__ L.
Lr=U>_i=1L
Example: Kleene closure

LetL = {dog, cat}. Observe that L° = {€}, L' = {dog, cat}, L? = {catcat, catdog, dogcat,
dogdog}, etc. Thus L*¥ contains, among its inﬁni’ce set of strings, the strings €, cat,
dog, catcat, catdog, dogca’c, dogdog, catcatcat, catdogcat, dogcatcat, dogdogca’c,
etc.

The notation for * should now become clear: it is simp [y a specia[case of L*

where L =Y

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 12

EECS6%%93.0 | ntroduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thurs&ags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Markov A[gorithms

A Markov Algorithm isa ﬁni’ce sequence P, P ,..,P_ of Markov producﬁons to be
app[ied to strings in a given a[phabet accord'mg to the fo“ow'mg rules. Let S be a given
string. The sequence is searched to ﬁnd the ﬁrst produc’cion P. whose antecedent
occurs in S.]fno such pvoduc’cion exists, the operation of the a[gori’chm halts without
change in S.]fthere (s a producﬁon in the a[gorithm whose antecedent occurs in S,
the ﬁrs’c such produc’cion (s appﬁed toS.]f’chis is a conclusive pvoduc’cion, the
operation of the a[gov'd:’nm halts without fwther change inS.]f’chis s a simp e
pvoducﬂon, a new search is conducted using the string S' into which S has been
transfovmed. lf’che operation of the a[gor[’chm u[ﬁma’ce[y ceases with a string S*, we
say that S* is the result of applying the algorithm to S.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 13

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursclays 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Markov Algori’chms

Examp le:

Take the alphabet to be {a, b, ¢, d}. The algorithm is given below.

Algorithm Ma
Mi1: [conclusive] ad — °dc
Maz2: [simple] ba — W
Mi3: [simple] a — bc
Mug: [simple] bc — bba
Mis: [simple] W — a

Taking S = “deb” we apply the algorithm
by Mis dcb becomes adch
by Mn adch becomes dccb and halts.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

14

EECS6%%93.0 | ntroduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thurs&ags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Markov A[gorithms
Examp le:

Let 3 be a marker not in the alphabet. If S is a string in the alphabet, the result of applying
algorithm M3 to S is the string SA.

Algorithm M3
Ms1: [interchange] o —0f 0, A € member of alphabet
M32: [conclusive] B — eA
M33: w = B

Since S initially does not contain [3, the third production is then used to move [3 past the symbols
in S. If S contains n occurrences of symbols, then after n steps we obtain the string SP. At this
point the ﬁrst producﬁon no [onger app[ies, and the second producﬁon produces SA. Since this
production is conclusive, the string SA is then the result.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 15

EECS6%%93.0 | ntroduction to Computationai Linguistics
Instructor: Nick Cercone — 3050 LAS — nici<.cercone@iassoncie.gorku.ca
Tuesdags, Tiiurs&ags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Markov Atgoritimfns

In the preceding examp le, we have introduced a new notation. Nameiy, in the ﬁrst
prooiuction we have used the variable O which ranges over the syrnbois in the aiphaioet.
Thus the ﬁrst line is not Veatty a pvooiuction, but rather a pvoduction schema, denoting all

the prooiuctions which can be obtained toy substituting symioots of the atpnabet for 0.

Because of the manner in which the Markov aigorithms are used, the order in which the

pvooiuctions are written is vital. ifthe ﬁrst two lines of aigorithm M3 were interchanged,
the result would be to transfown Sinto AS, rather than into SA, and the productions
represented by [36 - 6[3 would never be used.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 16

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursdays 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Markov A[gorithms

Examp le:

Another procedwe which is quite common is that of reversing a string of characters. We do this
]oy moving the ﬁrs’c character to the end as before, then moving the next character down to the
position just preceding the first character, and so on. Markers: W, B

Algorithm Mio
Mion: ufd — o)y 0, & members of the alphabet
Mio2: uop — 0
Mios: uﬁf - fua
Mioy: uo — [0
Mios: 74 —u

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 17

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca

Tuesdags, Thursclays 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

by Mios => WDPCBA
by Mioz => BDCBA
by Mios => WRDCBA
by Mio1 => DCBA

Markov Algorithms

Illustrating this algorithm on the string “ABCD” we have
by Mios => WABCD
by Mio3 => BWACD
by Mio3 => BCWAD
by Mio3 => BCDUA
by Miog => BCDPRA
by Mios => WBCDPA
by Mio3 => CuBDRA
by Mio3 => CDuBRA
by Mio2 => CDPBA
by Mios => WCDPBA
by Mio3 => DUCPBA
by Mio2 => DPCBA

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursdags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Representations of Languages

How can we decide on a ﬁni‘ce representations for [anguages? One way to represent a
[anguage s to give an algorithm which determines gC a sentence is in the [anguage or
not. A more general way is to give a procedure which halts with the answer "yes" for
sentences in the [anguage and either does not terminate or else halts with the answer
"no" for sentences not in the language. Such a procedure or algorithm is said to
recognize the language. As it turns out, there are [anguages we can recognize on

a procedwe, but not by any algovithm.

The method described can represent [anguages ﬁfom a recognition point of

view. We can also represent languages ﬁrom a generative point of view. That

s, we can give a procedwe which systemaﬁcaﬂy generates successive sentences

of the language in some order.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 19

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursdags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Representations of Languages

]fwe can recognize the sentences of a [anguage over alphaloet V with either an
algorithm ora procedwe, then we can generate the language, since we can
sys‘cematica“y generate all sentences in V*, test each sentence to see gC it is in the
[anguage, and output in a list on[y those sentences in the [anguage. One must be
careﬁd in do ing so. For gC we generate the sentences in order and use a procedure
which does not a[ways halt for testing the sentences, we never get loeyond the ﬁrst
sentence for which the procedwe does not halt.

The way to get around this pro]olem s to organize the testing in such a manner
that the procedwe never continues to test one sentence forevev.

This organizaﬁon Vequhfes that we introduce several constructions.

Instructor: Nick Cercone - 2050 CSEB - nick@cse.yorku.ca 20

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursdags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Representations of Languages

Assume that there are P symbo[s in V. We can think of the sentences of V*as
numbers Vepresented in base 2 p[us the empty sentence e. We can number the
sentences in order of increasing length and in "numerical" order for sentences of

the same [ength. In Fig. (a) we have the enumeration of the sentences of{a, b, c}*.

We have implicitly assumed that a, b, and c 12 E
cowespond to 0,1, and 2, Vespecﬁvely. (This 3 b
argument shows that the set of sentences over an g ;a
alphabet is countable.) 6 glco
7
8 ba
9 bb

Fig. (a) The enumeration of sentences in {a, b, c}*

Instructor: Nick Cercone - 2050 CSEB - nick@cse.yorku.ca 21

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursdags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Representations of Languages

Let P be a procedwre fov testing a sentence to see gf the sentence is in a language L.
We assume that P can be broken down into discrete steps so that it makes sense to
talk about the ith step in the procedwre fov any given sentence. Before giving a
procedwe to enumerate the sentences of L, we ﬁrst give a procedwe to enumerate

ailrs of positive integers.
pairs of p 8 W 1 2 3 4 5

We can map all ordered pairs of positive >
y
ntegers (x, y) onto the set of positive integers 1 1 3 6 10 15
as shown in Fig. (b) by the formula 5 2 5 9 14
z={[(c+y-1)(x+y—2)]/2} +y. 3 4 8 13
4 7 12

Fig. (b) Mapping pf ordered pairs of

ntegers onto the integers 5 11

Instructor: Nick Cercone - 2050 CSEB - nick@cse.yorku.ca 22

EECS6%%93.0 | ntroduction to Computatlonal ngwstics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassonde. gorku ca
Tuesdags Thursdags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Representations of Languages

We can enumerate ordered pairs of integers accord'mg to the assigned value of z. Thus
the ﬁrst few pairs are (1,1), (2,1), (1,2), (3,1), (2, 2), Given any pair of ntegers (i, J),
it will eventually appear in the list. n fact, it will be the [(i4)-1) (4 -2)] / 2+ jth
pair enumerated.

We can now give a procedure fov enumerating the strings of L.

Enumerate ordered pairs of integers. When the pair (i, J) is enumerated, generate the
ith sentence in V* and app ly the ﬁrst | steps of procedwe P to the sentence. Whenever
it is determined that a generated sentence is in L, add that sentence to the list of
members of L.]fword Lis in L, it will be so determined on P in j steps, fov some ﬁnite J-
When (i, J) is enumerated, word i will be generated. This procedwe will indeed

enumerate all sentences in L.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 23

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursdags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Representations of Languages

]fwe have a procedwe for generating the sentences of a language, then we can
construct a procedure for recognizing the sentences of the [anguage, but not
necessari[y an algorithm. To determine gc a sentence x is in L, simp ly enumerate the
sentences of L and compare x with each sentence.]fx S genera‘ced, the procedwre
halts, having Vecognized X as Ioe'mg in L. Of course, gc x is not in L, the pvocedwe will
never terminate.

A [anguage whose sentences can be generated on a procedwe is said to be Vecwsive[y
enumerable. A[temaﬁvely, a [anguage is said to be recurs 'Lve[y enumerable gc there is a
procedwre for recognizing the sentences of the [anguage. A language is said to be
recursive gf there exists an algorithm fov recognizing the language. In forma[
language theory, the class of recursive languages ls a proper subset of the class of

recursive [y enumera’o [e [anguages .
Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 24

EECS6%%93.0 | ntroduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thurs&ags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Representations of Languages

There are languages which are not even recurs 'wely enumerable. That is, there are
languages for which we cannot even eﬁecﬁve[y list the sentences of the language.
Asking the question, "What is [anguage ’cheory ?," we can say that language ’theory s
the s’tudy of sets of strings of symloo[s, their representations, structures, and
properties. Beyond this, we shall [eave the question to be answered in a course on

formal g rammars.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursdags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Grammars

There is one class of generating systems of primary interest to us, systems known as
grammars. The concept of a grammar was origina“y fovmaﬁzed on [inguists in their
study of natural [anguages. Linguists were concerned not on[y with deﬁning precise[y
what is or is not a valid sentence of a language, but also with providing structural
descriptions of the sentences. One of their goa[s was to develop a forma[grammar
capa’o le of describ g English.

It was hoped that Lf, fov examp le, one had a fovma[grammar (o describe the Eng[ish
[anguage, one could use the computer in ways that require it to "understand” Eng[is h.
Such a use migh’c be [anguage translation or the computer solution of word pvolo[ems.

To date, this goal S fov the most part unrealized in its tota[ity.

Instructor: Nick Cercone - 2050 CSEB - nick@cse.yorku.ca 26

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursdags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Grammars

We do not have a deﬁniﬁve grammar for Eng[ish, and there is even disagreement as
to what types of formal grammar are eapa’o e of describ ng English. However, in
describ ing computer [anguages, better results have been achieved. For examp le, the
Backus Normal Form used to describe ALGOL is a "context ﬁee grammar," a type of
grammar with which we shall s’cudy and build upon.

We are all fami[iar with the idea of diagramming or parsing an English sentence. For
examp le, the sentence "The little boy ran quiek[y" s parsed by noting that the
sentence consists of the noun phrase "The little boy" followed by the verb phrase "ran
quickly." The noun phrase is then broken down into the singular noun "boy" modified
by the two adjectives "The” and "little." The verb phrase is broken down into the
singular verb "ran” modified by the adverb "quickly." This sentence structure is

indicated in the diagram of Fig. (c).
Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 27

EECS6%%9 3.0 Introduction to ComPutational Linguistics
Instructor: Nick Cercone — 3050 LAS — nic|<.cerconc@lassonde.gorku.ca
Tuesdags, Thursdags 10:00-11:20 — LAS 50%3%

Winter Semester, 2015

Fig. (c). A diagram of the sentence "The little boy ran quickly."
Instructor: Nick Cercone - 3050 CSEB - nick@cse:yorku.ca 28

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursdags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Grammars

We recognize the sentence structure as Ioe'mg grammaﬁca“y correct.]fwe had a

comp lete set of rules for parsing all English sentences, then we would have a teclfmique
for determining whether or not a sentence is grammatica“y correct. However, such a set
does not exist. Part of the reason fov this stems ﬁrom the fact that there are no clear rules
fov detevmin'mg pvecisely what constitutes a sentence.

The rules we applied to parsing the above sentence can be written in the foUowing fovm:
<sentence> — <noun phrase> <verb phrase>
<noun]Ol’lVaS€> - <adjecﬁve> <noun]0’/11"&8€>
<noun phrase> — <adjecﬁve> <s'mgular noun>
<verb phrase> — <singular verb> <adverb>
<adjecﬁve> — The | little
<singu[ar noun> —> Iooy
<singular verb> — ran

<adverb> — quickly

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 29

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursdags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Grammars

The arrow in the rules indicates that the item to the leﬁ of the arrow can generate the
items to the righ’c of the arrow. Note that we have enclosed the names of the parts of the
sentence such as noun, verb, verb phrase, etc., in brackets to avoid confus ion with the

i

Engﬁsh words and phrases "noun," "verb," "verb plmrase,” etc.

Note that we cannot only test sentences fov their grammaﬁcal correctness, but can also
generate grammaticaﬂy correct sentences on starting with (sentence) and rep [acing
(sentence) on (noun plmrase) fouowed on (verb phrase). Next we select one of the two
rules for (noun phrase) and apply it, and so on, until no further application of the rules
S possib le. Thus any one of an inﬁnite number of sentences can be derived, e.g., a string
of occurrences of "the" and "little" followed by "boy ran quickly" such as "little the the
boy ran quick[y" can be generated. Most of the sentences do not make sense but,

nevertheless, are grammaﬁcaﬂy correct.
Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 30

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursclays 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Formal Notion of a Grammar

Forma“y, we denote a grammar G on (Vn, Vt, P, S). The symbo[s Vn, Vt, P, and S are, Vespecﬁve[y,
the variables, terminals, producﬁons, and start symbo/. Vn, Vt, and P are ﬁni’ce sets. We assume
that Vn and Vt contain no elements in common; i.e.,

VnMVt=¢
where € denotes the empty set and, conventiona“y
VnlU Vt=V

The set of produc’cions P consists of expressions of the form a— b, whereaisa string in V+and b
is a string in V*. Fina“y, Sis a[ways a sym’oo[in Vn.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%93.0 | ntroduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thurs&ags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Formal Notion of a Grammar

Customari[y, we shall use cap ital Latin a[p habet letters for variables. Lower case letters at the
beginn'mg of the Latin a[p habet are used for terminals. Strings of terminals are denoted by lower
case letters near the end of the Latin a[phaloet, and strings of variables and terminals are denoted
loy lower case Greek letters.

Given the grammar G = (Vn, Vt, P, S), we defme the [anguage it generates as foUows.]fa — bisa
producﬁon of P and g and d are strings in V7, then gad — gbd.

In Eng[ish we say gad dz'recz‘/)/ derives gbd in grammar G. We say that the producﬁon a—bis
app[ied to the string gad to obtain gbd. Thus G relates two strings exacﬂy when the second is
obtained from the furst by the applicaﬂon of a s'mg[e pvoducﬁon.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%93.0 | ntroduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thurs&ags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Formal Notion of a Grammar

We define grammars G and Gz to be equivalent if L(G1) = L(G2).
Example. Let us consider a grammar G = (VN, VT, P, S), where N = {S}, VT = {0, 1}, P = {S~ 0S1, S -+

o1}. Here, S is the on[y variable, 0 and 1 are terminals. There are two pvoducﬁons, S— 0S1and S — o
By app [y'mg the ﬁrs‘c production n -1 times, fo“owed by an app[icaﬁon of the second pvoduc’cion, we

have
S— 0S1 = o00Sll = 03513 ==>...==>0"S1 " — o""§

Furthermore, these are the on[y strings in L(G). Aﬁer using the second pvoducﬁon, we ﬁnd that the
number of S's in the sentential form decreases on one. Each time the ﬁrs‘c pvoducﬁon is used, the

number of S's remains the same. Thus, after using S — o1, 1o S's remain in the Vesu[ﬂng string.

Since both productions have an S on the leﬁ, the on[y order in which the producﬁons can be app[ied S
S-+ 0S1 some number of times followed by one application of S ~ 01. Thus, L(G) = {o™"|n =1}.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursclays 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Formal Notion of a Grammar

The examp le was a simp e examp e of a grammar., It was Velative[y easy to determine
which words were derivable and which were not. n genem[, it may be exceeding[y

hard to determine what is genevated on the grammar.,

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%93.0 | ntroduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thurs&ags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Types of Grammars
The Chomsky hierarchy of [anguages

A hierarchy of classes of [anguages, viewed as sets of strings, ordered on their
“comp[exity”. The higher the language is in the hierarchy, the move “comp[ex” it
LS.

In parﬁcular, the class of [anguages in one class propevly includes the [anguages n
lower classes.

There exists a cowespondence between the class of [anguages and the forma’c of

phrase~stmctwe rules necessary fov genemﬁng all its languages. The more

restricted are the rules, the lower in the hierarchy are the languages ’chey generate.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 25

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.yorku.ca
Tuesdays, Thursdays 10:00-11:20 — LAS 30%3
Winter Semester, 2015

The Chomsky hieravchy of [anguages

+ Recursively enumerable languages
+ Context-sensitive languages

+ Context-free languages

+ Regular languages

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursdays 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

The C ’/1010’18 l’{y ’(1 lerarc ’fly Of lang uages

Type-o grammars (unvestricted grammars) include all forma[grammars. They generate exac’dy all languages
that can be Vecognized by a Turing machine. These [anguages are also known as the Vecwrsive[y enumerable

[ang uages.

Type-1 grammars (context-sensitive grammars) generate the context-sensitive [anguages. These grammars
have rules of the form QAR — oy with A a nonterminal and «, B and y strings of terminals and
nonterminals. The strings a and B may be empty, but y must be nonempty. The rule =« is allowed if S does
not appear on the Vight side of any rule. The languages described by these grammars are exact[y all [anguages
that can be Vecognized by a linear bounded automaton (a nondeterministic Turing machine whose tape is

bounded on a constant times the [ength of the input.)

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thurs&ags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

The C homs l’{y ’(1 lerarc ’fly Of [ang uages

Type-2 grammars (context-free grammars) generate the context-free languages defined by rules of the form
A=Y with A a nonterminal and y a string of terminals and nonterminals. These languages are exactly all
[anguages Vecognized on a non-deterministic pushdown automaton. Con’cext—ﬁree languages are the basis for
most programming [anguages.

Type-3 grammars (Vegu[ar grammars) generate the regu[ar languages restricting its rules to a single
nonterminal on the LHS and a RHS consisting of a single terminal, possibly followed (or preceded, but not
both in the same grammar) on a s'mg[e nonterminal. The rule $—€ is allowed gC S does not appear on the RHS
of any rule. These languages are those that can be decided by a ﬁnite state automaton. This family of
languages can be obtained by regular expressions. Regular languages are commonly used to define search

patterns and the lexical structure of programming [anguages.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%93.0 | ntroduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thurs&ags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

The C ’('LOWlS l’{y ’/1 lerarc ’/1}/ Of [ang uages

Every Vegu[ar [anguage (S context—ﬁree, every context—ﬁee [anguage, not containing
the empty string, is context-sensitive and every context-sensitive [anguage S
recursive and every recursive language LS recurs 'Lve[y enumerable. These are all
proper inclusions, meaning that there exist recurs ive[y enumerable [anguages
which are not context-sensitive, context-sensitive languages which are not context-

ﬁfee and context—ﬁfee [anguages which are not Vegular.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 29

EECS6%%93.0 | ntroduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thurs&ags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

The Chomsky hierarchy of [anguages
The foﬂow'mg table summarizes each of Chomsky’s fowf types of grammars, the class of language

it generates, the type of automaton that recognizes it, and the form its rules must have.’

Grammar Languages Automaton Production rules
(constraints)

Type -0 Recursively enumerable Turing mac hine o _ B (norestrictions)

Linear -bounded non -
Type -1 Context -sensitive deterministic Turing aAB _ oyp
mac hine

Non-deterministic
Type -2 Context -free pushdown autom aton A

A _ a and

Type -3 Regular Finite state au tom aton
A_aB

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursclays 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

Why is it interesting?

+ The hieravchy represents some informal notion of the comp lexity of natural
languages

« Jtcan he[p accept or reject [inguisﬁc theories

+ 1t can shed ligh’c on questions of human processing of language

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdays, Thursdays 10:00-11:20 — LAS 30%3
Winter Semester, 2015

What exactly is the question?

When viewed as a set of strings, is English a regu[ar [anguage? Is it context-ﬁfee?
How about Hebrew?

Competence VS. Pevfovmance

— This is the dog, that worried the cat, that killed the rat, that ate the malt, that
lay in the house that Jack built.

— This is the malt that the rat that the cat that the dog worried killed ate

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdays, Thursdays 10:00-11:20 — LAS 30%3
Winter Semester, 2015

Where are natural languages located?

77

y Chomsky (1957): “Eng[ish is not a Vegular language
+ As for con’textfree languages, “1 do not know whether or not English LS 'Ltse[f

li’cera“y outside the range of such analyses”

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdays, Thursdays 10:00-11:20 — LAS 30%3
Winter Semester, 2015

How not to do it

An introduction to the princip les of transformational syntax (Akmaj ian and Heny,
1976)

“Since there seem to be no way of using such PS rules to represent an obviously
szgnﬁcanf genem/[zaﬁon about one /anguage, name/y, Eng/zls*/z, we can be sure

that p/zmse structure grammars cannot poss[b/y represent all the Slgnﬁcant

aspects cf /angaage structure. We must introduce a new kind of rule that will

. »”
permu‘ us to do so.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.yorku.ca
Tuesdays, Thursdays 10:00-11:20 — LAS 30%3
Winter Semester, 2015

How not to do it

Example: Syntax (Peter Culicover, 1976)

In genem/, for any p/zmse structure grammar containing a ﬁn[fe number of rules
it will a/wa)/s be poss[b/e to construct a sentence that the grammar will not
generate. In fact, because of recursion there will a/ways be an [rﬁnh‘e number of
such sentences. Hence, the p/zmse structure ana/ys[s will not be SLﬁc[ent to

generate Eng/zle/z.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thursclays 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

How not to do it

Example: Transformational grammar (Grinder & Elgin, 1973)
the girl saw the Iooy

*kthe ghrl kiss the looy

this well-known syntactic phenomenon demonstrates cleaﬂy the inadequacy of

context-ﬁ'ee phrase—stmctwe grammars...

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%93.0 | ntroduction to Computational Linguistics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdags, Thurs&ags 10:00-11:20 — LAS 30%3»

Winter Semester, 2015

How not to do it

The deﬁning characteristic of a context—ﬁree rule is that the sym’ool to be rewritten is to be
rewritten without reference to the context in which it occurs. By dqﬁniﬁon, one cannot
write a con’cext—ﬁree rule that will expand the sym’oo[Vinto kiss in the context of being
immediate[y pveceded on the sequence the g[r/s and that will expand the sym’ool Vinto
kisses in the context of be'mg immedia‘ce[y preceded on the sequence the gz'r/. Any set of
con’cext—ﬁree rules that generate (cowecﬂy) the sequences the g[r/ kisses the boy and the
g[r/s kiss the looywiﬂ also generate (incowec‘dy) the sequences the g[r/ kiss the boy and the
girls kisses the boy.

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca

EECS6%%9 3.0 Introduction to Computa’cional Linguis’cics
Instructor: Nick Cercone — 3050 LAS — nick.cercone@lassoncle.gorku.ca
Tuesdays, Thursdays 10:00-11:20 — LAS 30%3
Winter Semester, 2015

e 1 lke -
(; 1'd like to know
what this whole show

is all about
loefore it's out

Instructor: Nick Cercone - 3050 CSEB - nick@cse.yorku.ca 48

