Concurrent Object Oriented Languages

java.util.concurrent.locks

wiki.eecs.yorku.ca/course/6490A

CSE 6490A


wiki.eecs.yorku.ca/course/6490A

java.util.concurrent.locks

The package java.util.concurrent.locks contains the iterfaces
@ Condition
@ Lock
@ ReadWriteLock

CSE 6490A



The interface Lock is implemented by the classes
@ ReentrantLock
@ ReentrantReadWriteLock.ReadLock
@ ReentrantReadWriteLock.WriteLock

It provides more flexibility than synchronized methods and
synchronized blocks.

CSE 6490A



The Lock interface contains the methods
@ lock(): acquire this lock
@ unlock(): release this lock

@ newCondition(): returns a condition variable bound this
lock

CSE 6490A



Lock chaining

Node parent = null;

Node node = this.getRoot();

node.lock ()

while (!node.isLeaf())

{
parent = node;
node = node.getlLeft ();
node.lock () ;
parent.unlock () ;

}

node.unlock () ;

CSE 6490A



Locks and Exceptions

Lock lock = ...
lock.lock () ;
try

{

}
finally
{
lock.unlock () ;

}

CSE 6490A



The Condition interface contains the methods
@ await(): causes the current thread to wait on this condition
@ signal(): wakes up one thread waiting on this condition
@ signalAll(): wakes up all threads waiting on this condition

CSE 6490A



The interface Condition is implemented by the classes
@ AbstractQueuedLongSynchronizer.ConditionObject
@ AbstractQueuedSynchronizer.ConditionObject

CSE 6490A



The producer-consumer problem

Problem

Implement the class BoundedBuffer and its methods put and
get using Locks and Conditions.

CSE 6490A



ReadWriteLock

The interface ReadWriteLock contains the methods
@ readLock(): the lock used for reading
@ writeLock(): the lock used for writing

CSE 6490A



ReadWriteLock

The interface ReadWriteLock is implemented by the class
ReentrantReadWriteLock.

CSE 6490A



The readers-writers problem

Problem

Implement the class Database and its methods read and write
using ReadWriteLocks.

CSE 6490A



