
Due dates of assignments

Assignment 1: January 27
Assignment 2: February 24
Assignment 3: March 24

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


Dates of presentations

Presentation 1: February 5
Presentation 2: March 5
Presentation 3: April 1

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


Concurrent Programming Languages

Question
Can you name some concurrent programming languages?

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


Concurrent Programming Languages

Most concurrent programming languages consist of a
sequential programming language plus support for

thread creation,
communication, and
synchronization

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


Thread Creation

We distinguish between
static thread creation
only allowing a predefined number of threads
dynamic thread creation
allowing new threads to be created “on-the-fly”

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


Communication

We distinguish between communication using
shared variables
messages

synchronous (blocking send, blocking receive)
asynchronous (non-blocking send, blocking receive)

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


Shared variable communication

Question
What is a real life analogue for shared variable communication?

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


Synchronous message passing communication

Question
What is a real life analogue for synchronous message passing
communication?

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


Asynchronous message passing communication

Question
What is a real life analogue for asynchronous message passing
communication?

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


Synchronization

semaphores
locks
monitors
barriers
compare-and-swap
. . .

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


Mergesort

public void sort(int[] a)
{

mergesort(a, 0, a.length)
}

public void mergesort(int[] a, int low, int high)
{

// fill in the details
}

public void merge(int[] a, int low, int high)

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


Edsger Wybe Dijkstra

Member of the Royal
Netherlands Academy of
Arts and Sciences (1971)
Distinguished Fellow of the
British Computer Society
(1971)
Recipient of the Turing Award
(1972)
Foreign Honorary Member of
the American Academy of
Arts and Sciences (1975) Edsger Wybe Dijkstra

(1930–2002)

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Critical Section Problem

Consider two threads both defined by

while (true)
{

critical section
non-critical section

}

Mutual exclusion: Make sure that at any moment at most
one of the threads is in its critical section.
Freedom from deadlock: If one of the threads is well
outside its critical section, this is not allowed to lead to a
potential blocking of the other thread trying to enter its
critical section.
Freedom from starvation: If both threads are about to enter
their critical section, then the decision which one is to enter
its critical section cannot be postponed indefinitely.

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Producer-Consumer Problem

The producer-consumer problem (also known as the
bounded-buffer problem) is a classical concurrency problem.

The problem is to synchronize two threads, the producer and
the consumer, who share a common, fixed-size buffer. The
producer repeatedly generates a data item and puts it into the
buffer. At the same time, the consumer removes data items
from the buffer, one item at a time.

The problem is to make sure that the producer will not try to
add data items to a full buffer and that the consumer will not try
to remove data items from an empty buffer.

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Producer-Consumer Problem

We assume that the items are integers. We represent the buffer
by means of an array of integers. The array has a fixed size.

int N = 10; // capacity of buffer

The producer and consumer share the following variables.

int[] buffer; // array representing buffer
int next = 0; // index of cell for next item
int size = 0; // number of items stored in buffer

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Producer-Consumer Problem

Producer:

while (true)
int value = produce an item;
buffer[next] = value;
size++;
next = (next + 1) mod N;

Consumer:

while (true)
int value = buffer[(next - size) mod N];
size--;

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Producer-Consumer Problem

Question
How can we make sure that the producer will not try to add
data items to a full buffer?

Question
How can we make sure that the consumer will not try to remove
data items from an empty buffer?

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

The readers and writers problem, due to Courtois, Heymans
and Parnas, is another classical concurrency problem. It
models access to a database. There are many competing
threads wishing to read from and write to the database. It is
acceptable to have multiple threads reading at the same time,
but if one thread is writing then no other thread may either read
or write. The problem is how do you program the reader and
writer threads?

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

The readers and writers share the following variable.

semaphore mutex = 1;

Reader:

P(mutex);
read;
V(mutex);

Writer:

P(mutex);
write;
V(mutex);

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Question
Does it solve the readers-writers problem?

Answer
Yes!

Question
Is it a satisfactory solution?

Answer
No!

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Question
Does it solve the readers-writers problem?

Answer
Yes!

Question
Is it a satisfactory solution?

Answer
No!

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Question
Does it solve the readers-writers problem?

Answer
Yes!

Question
Is it a satisfactory solution?

Answer
No!

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Question
Does it solve the readers-writers problem?

Answer
Yes!

Question
Is it a satisfactory solution?

Answer
No!

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Question
Why not?

Answer
It does not allow multiple readers to read at the same time.

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Question
Why not?

Answer
It does not allow multiple readers to read at the same time.

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Options
While a writer is writing, readers and writers arrive. Once the
writer is done, can the readers start reading?

Yes

Options
While readers are reading, readers and writers arrive. Can the
readers start reading?

Yes

No reader is kept waiting unless a writer is writing.

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Options
While a writer is writing, readers and writers arrive. Once the
writer is done, can the readers start reading?

Yes

Options
While readers are reading, readers and writers arrive. Can the
readers start reading?

Yes

No reader is kept waiting unless a writer is writing.

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Options
While a writer is writing, readers and writers arrive. Once the
writer is done, can the readers start reading?

No

Options
While readers are reading, readers and writers arrive. Can the
readers start reading?

No

If a writer wants to write, it writes as soon as possible.

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A


The Readers-Writers Problem

Options
While a writer is writing, readers and writers arrive. Once the
writer is done, can the readers start reading?

No

Options
While readers are reading, readers and writers arrive. Can the
readers start reading?

No

If a writer wants to write, it writes as soon as possible.

wiki.cse.yorku.ca/course/6490A CSE 6490A

wiki.cse.yorku.ca/course/6490A

