
Morgan Kaufmann Publishers 8 December, 2015

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 1

Chapter 5
Large and Fast:
Exploiting Memory
Hierarchy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Memory Technology

 Static RAM (SRAM)
 0.5ns – 2.5ns, $2000 – $5000 per GB

 Dynamic RAM (DRAM)
 50ns – 70ns, $20 – $75 per GB

 Magnetic disk
 5ms – 20ms, $0.20 – $2 per GB

 Ideal memory
 Access time of SRAM

 Capacity and cost/GB of disk

§5.1 Introduction

Morgan Kaufmann Publishers 8 December, 2015

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Principle of Locality

 Programs access a small proportion of
their address space at any time

 Temporal locality
 Items accessed recently are likely to be

accessed again soon

 e.g., instructions in a loop, induction variables

 Spatial locality
 Items near those accessed recently are likely

to be accessed soon

 E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Taking Advantage of Locality

 Memory hierarchy

 Store everything on disk

 Copy recently accessed (and nearby)
items from disk to smaller DRAM memory
 Main memory

 Copy more recently accessed (and
nearby) items from DRAM to smaller
SRAM memory
 Cache memory attached to CPU

Morgan Kaufmann Publishers 8 December, 2015

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 3

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Memory Hierarchy Levels
 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in
upper level
 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent
 Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses
= 1 – hit ratio

 Then accessed data supplied from
upper level

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Cache Memory

 Cache memory
 The level of the memory hierarchy closest to

the CPU

 Given accesses X1, …, Xn–1, Xn

§5.2 T
he B

asics of C
aches

 How do we know if
the data is present?

 Where do we look?

Morgan Kaufmann Publishers 8 December, 2015

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 4

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Direct Mapped Cache

 Location determined by address

 Direct mapped: only one choice
 (Block address) modulo (#Blocks in cache)

 #Blocks is a
power of 2

 Use low-order
address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Tags and Valid Bits

 How do we know which particular block is
stored in a cache location?
 Store block address as well as the data

 Actually, only need the high-order bits

 Called the tag

 What if there is no data in a location?
 Valid bit: 1 = present, 0 = not present

 Initially 0

Morgan Kaufmann Publishers 8 December, 2015

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 5

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Cache Example

 8-blocks, 1 word/block, direct mapped

 Initial state

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Morgan Kaufmann Publishers 8 December, 2015

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Morgan Kaufmann Publishers 8 December, 2015

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 7

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Morgan Kaufmann Publishers 8 December, 2015

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 8

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Address Subdivision

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Example: Larger Block Size

 64 blocks, 16 bytes/block
 To what block number does address 1200

map?

 Block address = 1200/16 = 75

 Block number = 75 modulo 64 = 11

Tag Index Offset
03491031

4 bits6 bits22 bits

Morgan Kaufmann Publishers 8 December, 2015

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Block Size Considerations

 Larger blocks should reduce miss rate
 Due to spatial locality

 But in a fixed-sized cache
 Larger blocks fewer of them

 More competition increased miss rate

 Larger blocks pollution

 Larger miss penalty
 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Cache Misses

 On cache hit, CPU proceeds normally

 On cache miss
 Stall the CPU pipeline

 Fetch block from next level of hierarchy

 Instruction cache miss
 Restart instruction fetch

 Data cache miss
 Complete data access

