
EECS 2021
Computer Organization

Fall 2015

Based on slides by the author and prof.
Mary Jane Irwin of PSU.

Chapter Summary
 Stored-program concept
 Assembly language
 Number representation
 Instruction representation
 Supporting procedures in hardware
 MIPS addressing
 Some real-world stuff
 Fallacies and Pitfalls

Chapter 2 — Instructions: Language of the Computer — 2

Stored-Program Concept
 Program instructions are stored in the

memory.
 Every cycle, an instruction is read from the

memory (fetched).
 The instruction is examined to decide what

to do (decode)
 Then we perform the operation stated in

the instruction (execute)
 Fetch-Decode-Execute cycle.

Chapter 2 — Instructions: Language of the Computer — 5

Chapter 2 — Instructions: Language of the Computer — 6

Instruction Set
 The repertoire of instructions of a

computer
 Different computers have different

instruction sets
 But with many aspects in common

 Early computers had very simple
instruction sets
 Simplified implementation

 Many modern computers also have simple
instruction sets RISC vs. CISC

§2.1 Introduction

Chapter 2 — Instructions: Language of the Computer — 7

The MIPS Instruction Set
 Used as the example throughout the book
 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)
 Large share of embedded core market

 Applications in consumer electronics, network/storage
equipment, cameras, printers, …

 Typical of many modern ISAs
 See MIPS Reference Data tear-out card, and

Appendixes B and E

The Four Design Principles
1. Simplicity favors regularity.
2. Smaller is faster.
3. Make the common case fast.
4. Good design demands good

compromises

Chapter 2 — Instructions: Language of the Computer — 8

Chapter 2 — Instructions: Language of the Computer — 9

Arithmetic Operations
 Add and subtract, three operands

 Two sources and one destination
add a, b, c # a gets b + c

 All arithmetic operations have this form
 Design Principle 1: Simplicity favors

regularity
 Regularity makes implementation simpler
 Simplicity enables higher performance at

lower cost

§2.2 O
perations of the C

om
puter H

ardw
are

Chapter 2 — Instructions: Language of the Computer — 10

Arithmetic Example
 C code:
f = (g + h) - (i + j);

 Compiled MIPS code: (almost, this is not really assembly)

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 11

Register Operands
 Arithmetic instructions use register

operands
 MIPS has a 32 32-bit register file

 Use for frequently accessed data
 Numbered 0 to 31
 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values
 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§2.3 O
perands of the C

om
puter H

ardw
are

Chapter 2 — Instructions: Language of the Computer — 12

Chapter 2 — Instructions: Language of the Computer — 13

Register Operand Example
 C code:
f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4
 Compiled MIPS code: (This is a real assembly)

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 14

Memory Operands
 Main memory used for composite data

 Arrays, structures, dynamic data
 To apply arithmetic operations

 Load values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian (The commercial MIPS, not
really, but in this course)
 Most-significant byte at least address of a word
 c.f. Little Endian: least-significant byte at least address

Memory Access

Chapter 2 — Instructions: Language of the Computer — 15

Alignment restriction: requires
that objects fall on address that
is multiple of their size

0 1 2 3
Aligned

Not
Aligned

0 1 2 3

0 1 2 3

big endian MSB LSB

little endian LSB MSB

Bytes address

Another way to put it
Big Endian: leftmost byte is word address
Little Endian: rightmost byte is word address

Chapter 2 — Instructions: Language of the Computer — 16

"Little-Endian" by R. S. Shaw - Own work. Licensed under Public Domain via
Commons - https://commons.wikimedia.org/wiki/File:Little-
Endian.svg#/media/File:Little-Endian.svg

Big-Endian Little-Endian

Loading and Storing Bytes
 MIPS provides special instructions to move bytes

 What 8 bits get loaded and stored?
 load byte places the byte from memory in the

rightmost 8 bits of the destination register
 what happens to the other bits in the register?

 store byte takes the byte from the rightmost 8 bits of a
register and writes it to the byte in memory
 leaving the other bytes in the memory word

unchanged

Chapter 2 — Instructions: Language of the Computer — 17

lb $t0, 1($s3) #load byte from memory

sb $t0, 6($s3) #store byte to memory

Example

Chapter 2 — Instructions: Language of the Computer — 18

 Given the following code sequence and memory
state what is the state of the memory after
executing the code?

add $s3, $zero, $zero
lb $t0, 1($s3)
sb $t0, 6($s3)
Memory

0x 0 0 9 0 1 2 A 0
Data

0

4

8

12

16

20

24

0x F F F F F F F F

0x 0 1 0 0 0 4 0 2

0x 1 0 0 0 0 0 1 0

0x 0 0 0 0 0 0 0 0

0x 0 0 0 0 0 0 0 0

0x 0 0 0 0 0 0 0 0

 What value is left in $t0?

 What if the machine was little
Endian?

 What word is changed in Memory
and to what?

$t0 = 0x00000090

mem(4) = 0xFFFF90FF

$t0 = 0x00000012
mem(4) = 0xFF12FFFF0

4

8

12

16

20

24

Example

Chapter 2 — Instructions: Language of the Computer — 19

$3

$12

lbu $12, 2($3)

0x10001000

0xF2 0x10001002

Byte address

Example

Chapter 2 — Instructions: Language of the Computer — 20

$3

$12

lb $12, 2($3)

0x10001000

0xF2 0x10001002

Byte address

Example

Chapter 2 — Instructions: Language of the Computer — 21

$3

$11
$12

sb $12, 2($3)

0x10001000

?? 0x10001002

Byte address

0xA011C1D1

Chapter 2 — Instructions: Language of the Computer — 22

Byte/Halfword Operations
 Could use bitwise operations
 MIPS byte/halfword load/store

 String processing is a common case
lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 23

Memory Operand Example 1
 C code:
g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3
 Compiled MIPS code:

 Index 8 requires offset of 32
 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 24

Memory Operand Example 2
 C code:
A[12] = h + A[8];

 h in $s2, base address of A in $s3
 Compiled MIPS code:

 Index 8 requires offset of 32
lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 25

Registers vs. Memory
 Registers are faster to access than

memory
 Operating on memory data requires loads

and stores
 More instructions to be executed

 Compiler must use registers for variables
as much as possible
 Only spill to memory for less frequently used

variables
 Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 26

Immediate Operands
 Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction
 Just use a negative constant
addi $s2, $s1, -1

 Design Principle 3: Make the common
case fast
 Small constants are common
 Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 27

The Constant Zero
 MIPS register 0 ($zero) is the constant 0

 Cannot be overwritten
 Useful for common operations

 E.g., move between registers
add $t2, $s1, $zero

