Floating Point

Representation for non-integral numbers

- Including very small and very large numbers

Like scientific notation
$=-2.34 \times 10^{56} \longleftarrow$ normalized
$-+0.002 \times 10^{-4}$

- +987.02 × 10^{9}

not normalized

In binary
$- \pm 1 . x x x x x x x_{2} \times 2^{\text {yysy }}$
Types fl oat and doubl e in C

Floating Point Standard

Defined by IEEE Std 754-1985
Developed in response to divergence of representations

- Portability issues for scientific code

Now almost universally adopted
Two representations

- Single precision (32-bit)
- Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits double: 11 bits
Exponent single: 23 bits double: 52 bits

Fraction
$x=(-1)^{S} \times(1+$ Fraction $) \times 2^{(\text {Exponent-Bias })}$
S : sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative)
Normalize significand: $1.0 \leq \mid$ significand $\mid<2.0$

- Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- Significand is Fraction with the "1." restored

Exponent: excess representation: actual exponent + Bias

- Ensures exponent is unsigned
- Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value

- Exponent: 00000001
\Rightarrow actual exponent $=1-127=-126$
- Fraction: $000 \ldots 00 \Rightarrow$ significand $=1.0$
- $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

Largest value

- exponent: 11111110
\Rightarrow actual exponent $=254-127=+127$
- Fraction: $111 \ldots 11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

Exponents 0000... 00 and 1111... 11 reserved

Smallest value

- Exponent: 00000000001
\Rightarrow actual exponent $=1-1023=-1022$
- Fraction: $000 . . .00 \Rightarrow$ significand $=1.0$
- $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Largest value

- Exponent: 11111111110
\Rightarrow actual exponent $=2046-1023=+1023$
- Fraction: $111 . . .11 \Rightarrow$ significand ≈ 2.0
$\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

Relative precision

- all fraction bits are significant
- Single: approx 2^{-23}

Equivalent to $23 \times \log _{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision

- Double: approx 2^{-52}

Equivalent to $52 \times \log _{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

Represent -0.75
$-0.75=(-1)^{1} \times 1.1_{2} \times 2^{-1}$

- $S=1$
- Fraction = 1000... 00_{2}
- Exponent = -1 + Bias

Single: $-1+127=126=01111110_{2}$
Double: $-1+1023=1022=0111111111_{2}$
Single: 1011111101000...00
Double: 1011111111101000...00

Floating-Point Example

What number is represented by the singleprecision float
11000000101000... 00

- S = 1
- Fraction $=01000 \ldots 00_{2}$
- Exponent $=10000001_{2}=129$
$x=(-1)^{1} \times\left(1+01_{2}\right) \times 2^{(129-127)}$
$=(-1) \times 1.25 \times 2^{2}$
$=-5.0$

Denormal Numbers

Exponent $=000 \ldots 0 \Rightarrow$ hidden bit is 0

$$
x=(-1)^{s} \times(0+\text { Fraction }) \times 2^{- \text {Bias }}
$$

Smaller than normal numbers

- allow for gradual underflow, with diminishing precision

$$
\text { Denormal with fraction }=000 \ldots 0
$$

$$
x=(-1)^{s} \times(0+0) \times 2^{- \text {Bias }}= \pm 0.0
$$

Two representations of 0.0 !

Single Precision		Double Precision		Represents
E(8)	F(23)	E(11)	$F(52)$	
0	0	0	0	True 0
0	Nonzero	0	Nonzero	Denormalized number
1-254	Anything	1-2046	Anything	Float point number
255	0	2047	0	infinity
255	nonzero	2047	nonzero	NaN

Infinities and NaNs

Exponent $=111 \ldots 1$, Fraction $=000 . . .0$

- \pm Infinity
- Can be used in subsequent calculations, avoiding need for overflow check
Exponent $=111 \ldots 1$, Fraction $\neq 000 \ldots 0$
- Not-a-Number (NaN)
- Indicates illegal or undefined result
e.g., 0.0 / 0.0
- Can be used in subsequent calculations

