Floating-Point Addition

Consider a 4-digit decimal example

- $9.999 \times 10^{1}+1.610 \times 10^{-1}$

1. Align decimal points

- Shift number with smaller exponent
- $9.999 \times 10^{1}+0.016 \times 10^{1}$

2. Add significands

- $9.999 \times 10^{1}+0.016 \times 10^{1}=10.015 \times 10^{1}$

3. Normalize result \& check for over/underflow

- 1.0015×10^{2}

4. Round and renormalize if necessary

- 1.002×10^{2}

Floating-Point Addition

Now consider a 4-digit binary example

- $1.000_{2} \times 2^{-1}+-1.110_{2} \times 2^{-2}(0.5+-0.4375)$

1. Align binary points

- Shift number with smaller exponent
$=1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}$

2. Add significands

- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}=0.001_{2} \times 2^{-1}$

3. Normalize result \& check for over/underflow

- $1.000_{2} \times 2^{-4}$, with no over/underflow

4. Round and renormalize if necessary

- $1.000_{2} \times 2^{-4}$ (no change) $=0.0625$

FP Adder Hardware

Much more complex than integer adder
Doing it in one clock cycle would take too long

- Much longer than integer operations
- Slower clock would penalize all instructions FP adder usually takes several cycles
- Can be pipelined

FP Adder Hardware

Chapter 3 - Arithmetic for Computers - 31

Floating-Point Multiplication

Consider a 4-digit decimal example

- $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$

1. Add exponents

- For biased exponents, subtract bias from sum
- New exponent $=10+-5=5$

2. Multiply significands

- $1.110 \times 9.200=10.212 \Rightarrow 10.212 \times 10^{5}$

3. Normalize result \& check for over/underflow

- 1.0212×10^{6}

4. Round and renormalize if necessary

- 1.021×10^{6}

5. Determine sign of result from signs of operands

- $+1.021 \times 10^{6}$

Floating-Point Multiplication

Now consider a 4-digit binary example

- $1.000_{2} \times 2^{-1} \times-1.110_{2} \times 2^{-2}(0.5 \times-0.4375)$

1. Add exponents

- Unbiased: $-1+-2=-3$
- Biased: $(-1+127)+(-2+127)=-3+254-127=-3+127$

2. Multiply significands

- $1.000_{2} \times 1.110_{2}=1.1102 \Rightarrow 1.110_{2} \times 2^{-3}$

3. Normalize result \& check for over/underflow

- $1.110_{2} \times 2^{-3}$ (no change) with no over/underflow

4. Round and renormalize if necessary

- $1.110_{2} \times 2^{-3}$ (no change)

5. Determine sign: +ve $\times-\mathrm{ve} \Rightarrow-\mathrm{ve}$

- $-1.110_{2} \times 2^{-3}=-0.21875$

FP Arithmetic Hardware

FP multiplier is of similar complexity to FP adder

- But uses a multiplier for significands instead of an adder
FP arithmetic hardware usually does
- Addition, subtraction, multiplication, division, reciprocal, square-root
- FP \leftrightarrow integer conversion
- Operations usually takes several cycles
- Can be pipelined

FP Instructions in MIPS

FP hardware is coprocessor 1

- Adjunct processor that extends the ISA

Separate FP registers

- 32 single-precision: \$f0, \$f1, ... \$f31
- Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...

Release 2 of MIPs ISA supports 32×64-bit FP reg's
FP instructions operate only on FP registers

- Programs generally don't do integer ops on FP data, or vice versa
- More registers with minimal code-size impact

FP load and store instructions

- | wc $1, \mid d c 1, s w c 1, s d c 1$
e.g., Idc1 \$f $8,32(\$ s p)$

FP Instructions in MIPS

Single-precision arithmetic

- add. s, sub.s, mul. s, div.s e.g.,add.s \$f0, \$f1, \$f 6

Double-precision arithmetic

- add. d, sub. d, mul . d, div.d e.g., mul.d \$f4, \$f4, \$f6

Single- and double-precision comparison

- $c . x x, s, c, x x . d(x x$ is $e q,|t| e,, \ldots)$
- Sets or clears FP condition-code bit
e.g.c.lt.s \$f 3, \$f 4

Branch on FP condition code true or false

- bc1t, bc1f
e.g., bc1t TargetLabel

FP Example: ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$

C code:
float f 2c (float fahr) \{ return ((5.0/9.0)*(fahr-32.0));
\}

- fahr in \$f12, result in \$f0, literals in global memory space
Compiled MIPS code:
f2c: Iwc1 \$f16, const5(\$gp)
| wc2 \$f18, const9(\$gp)
div.s \$f16, \$f16, \$f18
|wCl \$f18, const32(\$gp)
sub.s \$f18, \$f12, \$f18
mul.s $\$ f 0$, $\$ f 16$, $\$ f 18$
$j r \quad \$ r a$

