Accurate Arithmetic

IEEE Std 754 specifies additional rounding control

- Extra bits of precision (guard, round, sticky)
- Choice of rounding modes
- Allows programmer to fine-tune numerical behavior of a computation
Not all FP units implement all options
- Most programming languages and FP libraries just use defaults
Trade-off between hardware complexity, performance, and market requirements

Interpretation of Data

The BIG Picture
Bits have no inherent meaning

- Interpretation depends on the instructions applied
Computer representations of numbers
- Finite range and precision
- Need to account for this in programs

Associativity

Parallel programs may interleave operations in unexpected orders

- Assumptions of associativity may fail

		$(x+y)+z$	$x+(y+z)$
x	$-1.50 E+38$		$-1.50 E+38$
y	$1.50 E+38$	$0.00 E+00$	
z	1.0	1.0	$1.50 E+38$
		$1.00 E+00$	$0.00 E+00$

Need to validate parallel programs under varying degrees of parallelism

x86 FP Architecture

Originally based on 8087 FP coprocessor

- 8×80-bit extended-precision registers
- Used as a push-down stack
- Registers indexed from TOS: ST(0), ST(1), ...

FP values are 32-bit or 64 in memory

- Converted on load/store of memory operand
- Integer operands can also be converted on load/store
Very difficult to generate and optimize code
- Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
F\|LD mem/ST(i)	F\|ADDP mem/ST(i)	F/COMP	FPATAN
F\|STP mem/ST(i)	F\|SUBRP mem/ST(i)	F\|UCOMP	F2XMI
FLDPI	F\|MULP mem/ST(i)	FSTSW AX/mem	FCOS
FLD1	F\|DIVRP mem/ST(i)		FPTAN
FLDZ	FSQRT		FPREM
	FABS	FRNDINT	
		FPSIN	

Optional variations

- I : integer operand
- P : pop operand from stack
- R : reverse operand order
- But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

Adds 4×128-bit registers

- Extended to 8 registers in AMD64/EM64T

Can be used for multiple FP operands

- 2×64-bit double precision
- 4×32-bit double precision
- Instructions operate on them simultaneously

Single-Instruction Multiple-Data

Right Shift and Division

Left shift by i places multiplies an integer by 2^{i}
Right shift divides by 2^{i} ?

- Only for unsigned integers

For signed integers

- Arithmetic right shift: replicate the sign bit
- e.g., -5 / 4
$11111011_{2} \gg 2=11111110_{2}=-2$
Rounds toward $-\infty$
- c.f. $11111011_{2} \ggg 2=00111110_{2}=+62$

Who Cares About FP Accuracy?

Important for scientific code

- But for everyday consumer use?
"My bank balance is out by $0.0002 \phi!"$:
The Intel Pentium FDIV bug
- The market expects accuracy
- See Colwell, The Pentium Chronicles

Concluding Remarks

ISAs support arithmetic

- Signed and unsigned integers
- Floating-point approximation to reals

Bounded range and precision

- Operations can overflow and underflow MIPS ISA
- Core instructions: 54 most frequently used 100% of SPECINT, 97% of SPECFP
- Other instructions: less frequent

