Q1.
(1) C
(2) D
(3) A
(4) B

Q2.
(a) 3 essential nodes
(b) $2,3,4 / 5 / 6$
(c) 3 meshes
(d) One supermesh for nodes 2 and 3
(e) Using supermesh concept at Nodes 2 and 3, we have:

$$
\begin{aligned}
& \left\{\begin{array}{c}
I_{1} R_{1}+\left(I_{1}-I_{2}\right) R_{2}+5=0 \\
\left(I_{2}-I_{1}\right) R_{2}+I_{3} R_{3}+10=0 \\
i_{x}=I_{1}-I_{2}=I_{3}-I_{2} \\
5 I_{1}-I_{2}=-0.005
\end{array}\right. \\
& \rightarrow\left\{\begin{array}{c}
-I_{1}+I_{2}+2 I_{3}=-0.010 \\
I_{1}-I_{3}=0
\end{array}\right.
\end{aligned}
$$

Or:
Without using supermesh concept, we can write 3 KVLs (assuming the voltage across dependent source is V_{x}.

$$
\begin{aligned}
& \qquad\left\{\begin{array}{l}
I_{1} R_{1}+\left(I_{1}-I_{2}\right) R_{2}+5=0 \\
\left(I_{2}-I_{1}\right) R_{2}-V_{x}+10=0 \\
I_{3} R_{3}+V_{x}=0 \\
i_{x}=I_{1}-I_{2}=I_{3}-I_{2}
\end{array}\right. \\
& \text { (f) } i_{x}=5 \mathrm{~mA}
\end{aligned}
$$

Q3.
(1) Equivalent inductance: 0.12 mH
(2) Time constant: $6 \mu \mathrm{~s}$
(3) Voltage between nodes "a" and "b"
$\mathrm{V}(\mathrm{t})=40 e^{-\frac{t \times 10^{6}}{6}} \mathrm{~V}$
(4) Power dissipated:

$$
\mathrm{P}=80 e^{-\frac{t \times 10^{6}}{3}} \mathrm{~W}
$$

