LE/EECS 4214 Fall 2015

L14: Bandpass Modulation

Sebastian Magierowski York University

Outline

- 14.1 Basics
- 14.2 Bandpass Signaling
- 14.3 PSK: Phase Shift Keying
- 14.4 FSK: Frequency Shift Keying
- 14.5 ASK: Amplitude Shift Keying
- 14.6 APK: Amplitude Phase Keying
- 14.7 Signal Space Concepts
- 14.8 Signal Space Examples

Basics: Baseband

- So far we have discussed communication pulses with spectra centred at DC
 - Basband signalling

Bandpass Channels

- But there are channels not conducive to this
 - Wireless

Bandpass Channels

- Wired can also be bandpass
 - ADSL

L14: Bandpass Modulation

750 MHz

Downstream data

Bandpass Signalling

Instead of pulse you send modulated sine waves

$$s(t) = A(t)\cos[\omega_o t + \phi(t)]$$

- Which result in bandpass channels (in frequency)
 - With less spectral efficiency!
 - At first look

Bandpass Signal Parameters

• Three main parameters to control

- These extra "levers" allow you to squeeze in more data per symbol
 - We'll see this more clearly soon

A Note on Signal Settings

 Common to designate amplitude in terms of signal energy per symbol

$$A_{rms} = \left\{ \frac{1}{T} \int_0^T A^2 \cos^2(\omega_o t) dt \right\}^{\frac{1}{2}} = \frac{A}{\sqrt{2}}$$

$$A = \sqrt{2}A_{rms} = \sqrt{2A_{rms}^2} = \sqrt{2P} = \sqrt{\frac{2E}{T}}$$

– P = avg. power per symbol

A Peak at Demodulation

- Coherent Demodulation
 - RX has to know the phase of your sine wave to pick out the data
 - Carrier recover needed

- Non-Coherent Demodulation
 - RX does not need to know the phase of sine wave

14.3 PSK: Phase Shift Keying

Symbols have different phase

 $s_i(t) = \sqrt{\frac{2E}{T}} \cos[\omega_o t + \phi_i(t)], \quad 0 \le t \le T, i = 1, \dots, M$ $\downarrow_{\phi_i(t)} = \frac{2\pi i}{M}$

• BPSK: Binary Phase Shift Keying $\phi_1(t) = \pi \quad \phi_2(t) = 0$

14.4 FSK: Frequency Shift Keying

- Symbols have different frequency
 - $-\omega_{i}$ has *M* discrete values

$$s_i(t) = \sqrt{\frac{2E}{T}} \cos[\omega_i t + \phi], \quad 0 \le t \le T$$

Binary example:Information101101

Frequency Shift Keying

14.5 ASK: Amplitude Shift Keying

Amplitude takes on different value for each symbol

$$s_i(t) = \sqrt{\frac{2E_i}{T}} \cos[\omega_o t + \phi], \quad 0 \le t \le T$$

- Binary example
 - OOK (On-Off Keying)

Information 1 0 1 1 0 1

Amplitude Shift Keying

14.6 APK: Amplitude-Phase Keying

• A combination of ASK & PSK

$$s_i(t) = \sqrt{\frac{2E_i}{T}} \cos[\omega_o t + \phi_i], \quad 0 \le t \le T$$

• QAM: Quadrature Amplitude Modulation

14.7 Signal-Space Concepts

- A more general description of signals is possible
 - Not just bandpass signals
 - But also signal sequences!
- The description consists of...
 - ...sequence of orthogonal signals
- These descriptions allow more efficient organization of receiver structures for sophisticated signals

Signal Space

Your signal can be represented as a point in an abstract space

- The axes represent orthogonal signals
 - Which constitute any signal you may wish to define in this space

Basis Functions

- Basis Functions
 - The functions that define our signal space coordinates

$$\psi_m(t) \quad m = 0, 1, \dots$$

- Defined over some time interval T_i to T_f
 - T_i : initial time, T_f : final time
- Make sure the functions are PERPENDICULAR to each other
 - Orthonormal

$$\int_{T_i}^{T_f} \psi_i(t)\psi_j(t)dt = \delta_{ij} = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases}$$

EECS 4214, F15

Basis Function Example

• Fourier series coefficients

$$\psi_m(t) = \left\{ \left(\frac{1}{T}\right)^{\frac{1}{2}}, \left(\frac{2}{T}\right)^{\frac{1}{2}} \cos(m\omega_o t), \left(\frac{2}{T}\right)^{\frac{1}{2}} \sin(m\omega_o t), \ldots \right\} \ m = 1, 2, \ldots$$

$$T = T_f - T_i$$

 $T = \frac{2\pi}{\omega_o}$

Basis Function Example

• Finite set of N non-overlapping pulses

Signals in Space

- Any of *M* symbols: $s_i(t), i = 1, 2, \dots, M$
- Can be expressed as a *N*-term series expansion
 - of orthonormal basis functions

$$s_i(t) = \sum_{j=1}^N a_{ij}\psi_j(t)$$

- expansion coefficients a_{ij}

$$a_{ij} = \int_{T_i}^{T_f} s_i(t)\psi_j(t)dt$$

• projection of *i*th symbol on *j*th basis function

Signal Space Pictorially

- Collection of M points in N-space
 - Signal Constellation

$$s_{i}(t) = \sum_{j=1}^{N} a_{ij}\psi_{j}(t)$$

$$a_{ij} = \int_{T_{i}}^{T_{f}} s_{i}(t)\psi_{j}(t)dt$$

$$\psi_{2}$$

$$\overline{s_{j}} = (a_{j1}, a_{j2}, \dots, a_{jN})$$

Signal Generation & Recovery

Generation

$$s_i(t) = \sum_{j=1}^N a_{ij}\psi_j(t)$$

$$a_{ij} = \int_{T_i}^{T_f} s_i(t)\psi_j(t)dt$$

EECS 4214, F15

14.8 Signal Space Examples

• Draw the signal constellation

Signal Space Example

• What value of A is needed to make these basis functions orthonormal?

Signal Space Example

 For the basis functions shown, sketch the signal waveforms corresponding to the indicted constellation points

M-ary PSK in Signal Space

• The M-ary PSK

$$s_i(t) = \sqrt{\frac{2E}{T}} \cos\left(\omega_o t + \frac{2\pi i}{M}\right), \ i = 0, \dots, M-1$$

- Just a harmonic signal with some phase
- Fourier series only needs 2 coefficients for this
 - Hence our basis functions can be...

$$\psi_1(t) = \sqrt{\frac{2}{T}}\cos(\omega_o t)$$
 $\psi_2(t) = \sqrt{\frac{2}{T}}\sin(\omega_o t)$

M-ary PSK Constellation

The resulting constellation is

$$s_i(t) = \sqrt{\frac{2E}{T}} \cos\left(\omega_o t + \frac{2\pi i}{M}\right), \ i = 0, \dots, M-1$$

EECS 4214, F15

L14: Bandpass Modulation

26

2-ary PSK = BPSK

• Constellation is... $\phi_1(t) = 0$ $\phi_2(t) = \pi$

$$-\sqrt{\frac{2E}{T}}\cos(\omega_o t) = s_2(t) \qquad \qquad s_1(t) = \sqrt{\frac{2E}{T}}\cos(\omega_o t)$$
$$\xrightarrow{-\sqrt{E}} \psi_1$$

$$\psi_1(t) = \sqrt{\frac{2}{T}} \cos(\omega_o t)$$

QAM

Quadrature Amplitude Modulation _____

$$s_i(t) = a_{i1}\sqrt{\frac{2}{T}}\cos(\omega_o t) + a_{i2}\sqrt{\frac{2}{T}}\sin(\omega_o t)$$
$$s_i(t) = a_i\sqrt{\frac{2}{T}}\cos(\omega_o t) + b_i\sqrt{\frac{2}{T}}\sin(\omega_o t)$$

- Signal space coordinates: (a_i, b_i)
 - Typically chosen from points on a 2D square grid
 - 4-QAM example

Larger QAM Constellations

- With 4-QAM
 - bits represented per symbol: N = 2
 - Constellation points: $M = 2^N = 4$
- Many other possibilities (rectangular constellation)
 - $N = 3, 4, 5, \dots$

• Increasing *N* requires more power

EECS 4214, F15