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1 Purpose

Digital communications requires a fairly sophisticated understanding of signals and the systems that process
those signals. In this lab you will review basic concepts related to the analysis of signals and the systems.
This should be review from your Signals and Systems course. You may want to refer to the material from
that course if you need more brushing up. This lab should also serve as a chance to practice the manipulation
of signals in MATLAB (You don’t have to, but I highly, highly, very highly recommend you use MATLAB
for your computing needs in the course).

2 Objectives

By the end of this lab, you will be able to:

1) Generate deterministic signals of your own choosing.

2) Compute a variety of signal transforms.

3) Filter incoming signals.

3 References

1) Bernard Sklar text (required text for the course): Section 1.2, Section 1.6, Appendix A, Appendix E.

4 Continuous-Time Signals

Communication is based on the exchange of signals. In this class we focus on the exchange of electromagnetic
(EM) signals. For our purposes we don’t have to worry about the physical details of this signal but rather
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discuss its mathematical representation as a continuous function of time, xc(t). For example,

xc(t) = Asin(ωt +θ) (1)

could represent the characteristics of an electronic voltage or current waveform resulting from some EM
excitation. Naturally much more sophisticated waveforms are possible. In the equation above ω is the
angular frequency, typically in radians-per-second and θ is the phase of the signal. Recall the relationship
between the angular frequency and the natural frequency (I’ll just refer to this as the “frequency”), f

ω = 2π f (2)

where f is in units of cycles-per-second or Hz for short.

Problem 1 On your computer create a plot of a sine wave showing two periods (no more no less if you want full
marks). The amplitude of the sine wave should be 2 and its frequency should be 5 MHz and its phase
should be 0. Did I mention that I highly recommend you use MATLAB for questions such as this? Not
only is it really easy to plot things in this software, but MATLAB also comes equipped with a bunch of
powerful functions that you will be using again and again in this course. Let me give you some hints.

To create a vector (or array) of numbers I can just type
t = 0:1e-3:12.1;

which creates a row vector of 12101 elements consisting of numbers from 0 to 12.1 inclusive in steps
of 0.001. Such a vector can then be used to create another vector, say
omega = 23;
y = 12*cos(omega*t);

where omega defines our angular frequency an y is another 12101 element vector now corresponding
to a cosine function. To plot the result in a nice an pretty fashion you can use something like
plot(t,y,’k’,’LineWidth’,2);grid;
set(gca,’Xscale’,’linear’,’FontSize’,12,...

’MinorGridLineStyle’,’none’);
xlabel(’$time$ [s]’,’Interpreter’,’latex’,...

’FontSize’,14,’FontName’,’times’,’Units’,’Normalized’,...
’Position’,[0.5,-0.07],’FontName’,’times-roman’);

ylabel(’Amplitude’,’Interpreter’,’latex’,...
’FontSize’,14,’FontName’,’times’,’Units’,’Normalized’,...
’Position’,[-0.08,0.5],’FontName’,’times-roman’);

title(’A Signal Plot’)

where I’ll let you figure out and decide which parts you want to use and which parts you do not want
to use.

Fig. 1 is an example (but you should be able to notice that it is not quite correct) of what I’d like to see
from you in this problem. Notice the judicious labelling (names and units where applicable). For full
marks you should be doing the same in all your quantitive plots.

Besides being continuous the signal above is also periodic meaning that xc(t) = xc(t + kT ) where k is any
integer you want and T = 1/ f is the period of the signal; the time over which the signal repeats.

An example of a non-periodic signal that you will see ALOT in this course is

xc(t) =
sin(πt f )

πt f
= sinc(t f ) (3)

which we often refer to as the “sinc” pulse or sinc function.
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Figure 1: An example of a good (but not quite correct) reply to Problem 1.

Problem 2 Sketch by hand (but by all means use MATLAB to verify your answer if you wish, it even comes with a
convenient sinc function) a sinc pulse (of maximum height equal to unity) versus t · f for a frequency
f of 5 MHz. Your sketch should clearly demonstrate the symmetry of the function. Carefully annotate
the x and y axes of your sketch (with labels and numbers) so that we are sure you understand key
properties of this function.

5 Continuous-Time Signal Transforms

It is easy to imagine our communication signals as continuous functions of time as discussed above. Our own
actions seem to clearly occur with respect to time that thinking of signals operating in the temporal dimension
is straightforward.

As you have already learned though, there are other ways of expressing our signals. These alternate ex-
pressions are extremely popular because they highlight other signal properties (e.g. spectral properties) and
because they greatly simplify certain signal calculations (e.g. the effect of filtering).

The Fourier series (FS) is a prominent example of alternate expressions applicable to periodic signals with
period To = 2π/ωo = 1/ fo and can be stated as

FS : xc(t) =
∞

∑
n=−∞

ane jnωot ‖ FS−1 : an =
1
To

∫ t+To

t
xc(t)e− jnωotdt (4)

where, with regards to the FS expression, we see that the continuous signal may be stated in terms of a sum
of complex exponential functions or, more generally, basis functions.

Problem 3 By hand, calculate all of the complex Fourier series coefficients (i.e. all the non-zero an) of the sine
wave described in Problem 1.

My use of the label, FS−1, is meant to imply a concept akin to “inverse Fourier series”, but this is not at all
standard in the literature (so don’t expect to find a consistent use if googling) and I use it as a personal tool to
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help me organize my thoughts with respect to other signal transforms. In essence my FS−1 expression above
is just the equation you use to calculate your Fourier coefficients, an. In the literature my FS is sometimes
referred to by the general label of “synthesis equation” and my FS−1 is sometimes referred to by the general
label of “analysis equation” and the two form an “analysis-synthesis” pair.

Another popular and related expression applicable to signals of finite energy1 is the Fourier transform (FT).
If you scan the literature (or just google it if feeling lazy) you’ll see a bunch of different expressions for this
which are all basically equivalent after a little bit of scaling here and there. In engineering we typically use
the forms

FT−1 : xc(t) =
1

2π

∫
∞

−∞

Xc( jω)e jωtdω ‖ FT : Xc( jω) =
∫

∞

−∞

xc(t)e− jωtdt (5)

FT−1 : xc(t) =
∫

∞

−∞

Xc( f )e j2π f td f ‖ FT : Xc( f ) =
∫

∞

−∞

xc(t)e− j2π f tdt (6)

You will probably recall that Xc( jω) and, identically, Xc( f ) define our signal spectrum.

Problem 4 By hand, calculate the Fourier transform of the sinc pulse described in Problem 2.

Actually you can find the FT of signals that are infinite in energy2 as long as those signals are periodic. How?
Just represent your periodic signal in FS form

xc(t) =
∞

∑
n=−∞

ane jnωot (7)

and take the FT of that

Xc( jω) = 2π

∞

∑
n=−∞

anδ (ω−nωo) (8)

Xc( f ) =
∞

∑
n=−∞

anδ ( f −n fo) (9)

where δ is the Dirac delta function.

6 Discrete-Time Signals

The EM signals that we send through wires or through the air (or water or space or . . . ) are indeed continuous
in time (i.e. analog) as introduced above. This should make sense since the scales on which we excite and
sense signals in the natural world effectively resemble a continuum in time and space (yes, if you start looking
closely enough you will start seeing that at some scales this is an illusion).

However the vast majority of the equipment we build to actually extract the information contained within
our signal is not analog. It is digital. Digital equipment is defined by the fact that it process signals that can
only take on discrete quantities in time and discrete quantities in amplitude. That is signals that assume only
certain values (discrete-amplitude) only at certain times (discrete-time). You may imagine that a machine that
can only process digital signals is much simpler to make than a machine that has to process analog signals. If
you did imagine this then you are right! In fact they are so easy to make that it is possible to think of them in a
highly modular manner and hence construct extremely sophisticated versions of them (alas, so sophisticated

1“Energy signals” which are signals of finite energy are discussed in class and in Ch. 2 of the Sklar text.
2Infinite energy signals are so-called “power signals” and are discussed in class as well as Ch. 2 of the Sklar text.
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Figure 2: An example of the general (but not correct) form of the reply to Problem 5.

that they eventually become quite hard to engineer and require the collaborative effort of 100s of people) with
unprecedented levels of ability to process discretqe signals in all sorts of complex manners.

Of course you might wonder what the point of processing discrete signals is anyway. Aren’t these just useless
because they only have certain values at certain times. Hopefully by now you appreciate enough about word
length and Nyquist-Shannon sampling to suspect that discrete signals are in fact no that useless.

In the following discussion we will address the handling of signal discrete in time and possibly continuous in
amplitude. In other words, not digital signals, but rather discrete-time signals.

A common reference to a discrete-time signal is in terms of a continuous analog signal sampled at discrete
instances of time. That is, we refer to xc(nTs) where Ts is the sampling period and n is an integer. The
sampling frequency is denoted by fs = 1/Ts. Since the samples of a signal are just a sequence of numbers it
is also very common to drop any direct reference to time and employ the notation x[n] = xc(nT ).

Problem 5 Revisit Problem 1 and this time “plot” the sine waveform using a more appropriate representation. In
particular we need to acknowledge that all the signals we display on our computers, which are digital
machines, are in fact digital representations of any ostensibly continuous-time signals. Continue to
pretend that your computer can produce perfectly accurate values of your continuous-time sine wave,
but assume that fs = 3×5 MHz (i.e. oversample your ideal continuous-time waveform by 3). Instead
of using MATLAB’s plot function use its stem function to display the signal in a way that more
clearly conveys its discrete-time nature. Fig. 2 is an example (again, not correct) of the form that your
answer should take.

If our signal repeats (i.e. is periodic) every No = 2π/Ωo samples x[n] = x[n+ lNo] (where l is an integer) then
we can employ a discrete-time Fourier series (DTFS) expression

DTFS : x[n] =
∞

∑
k=−∞

cke jkΩon ‖ DTFS−1 : ck =
1

No

m+No−1

∑
n=m

x[n]e− jkΩon (10)

Note the similarities and differences between these expressions and those associated with continuous-time
signals above. Again my use of the term DTFS−1 is not a standard way of labelling, in general we use
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this function to calculate the Fourier series coefficients of the discrete-time signal. The angular frequency
variable, Ωo, is effectively in units of radians per sample (not radians per second).

For signals of finite duration we also have the discrete-time Fourier transform (DTFT) through which to form
alternate signal expressions

DTFT−1 : x[n] =
1

2π

∫
π

−π

X(e jΩ)e jΩndΩ ‖ DTFT : X(e jΩ) =
∞

∑
n=−∞

x[n]e− jΩn (11)

As we have normalized time from t to n in the DTFT we also normalize 3 our concept of frequency to Ω=ωTs
(also in radians/sample). Note that Ω is continuous so the DTFT of x[n] is continuous. Recall also that the
function e jx is periodic over x with a period of 2π so the DTFT X(e jΩ) is periodic with Ω over 2π . Typically
we present X(e jΩ) over Ω-domain in the interval [−π,π) (that is −π ≤Ω < π , but no one will fault you for
just using−π ≤Ω≤ π). From our normalization relation you should appreciate that Ω = π is the normalized
version of f = fs/2 (i.e. the Nyquist sampling frequency) in the f -domain.

As with the (continous-time) FT, the DTFT can also be used describe a periodic signal, x[n] = x[n+ lNo], first
expressed as a DTFS. In particular we can obtain the expression

X(e jΩ) =
2π

No

∞

∑
k=−∞

ckδ (Ω− kΩo) (12)

Finally we are ready to state the final transform of the discussion. The discrete Fourier transform (DFT). This
is arguably the most practical of transforms for our needs as it expresses signals consisting of a finite number
of samples, N, (a very practical case indeed) and results in a transformation also consisting of a discrete
spectrum (unlike the DTFT) with N components. This latter point is sometimes referred to as frequency
sampling. Without further ado the DFT expressions are

DFT−1 : x[n] =
1
N

N−1

∑
k=0

X [k]e jk 2π
N n ‖ DFT : X [k] =

N−1

∑
n=0

x[n]e− jk 2π
N n (13)

MATLAB can conveniently calculate the DFT for you with its function fft. MATLAB can also calculate
the inverse DFT for you with the function ifft.

Problem 6 Revisit the signal in Problem 1 and this time compute the absolute values of DFT (i.e. |X [k]|) of
that signal using an oversampling rate of 8× and 34×. In both cases gather a total of 512 samples.
Show your DFT results (i.e. |X [k]| vs k) in a plot (there are lots of points so its ok to use plot, but
its also ok to use stem). Make sure that you show exactly the DFT results as defined in (13) above
(you’ll get a chance to manipulate you DFT results in the following problems). Which one of these
DFT calculations do you think is a better estimate of the spectral content of the signal? Explain why
you said one is better than the other. Explain why one oversampling rate gives a better estimate of the
spectral content of the other.

Problem 7 In Problem 6 you plotted the DFT of a signal. But we can use the DFT to show approximations
of our other transforms too. With that in mind use the DFT for the 8× oversampled signal that you
calculated for that sine wave to plot the (approximation to) the imaginary component of DTFT (i.e.
imag{X(e jΩ)}) of the same signal over the interval [−π,π). Make sure your plot’s axes are clearly
labelled. You might find the MATLAB function fftshift useful for this problem.

3The normalization, Ω = ωTs, is clear if you look more deeply at the derivation of the DTFT, I just state the result in this lab write-up.
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Problem 8 In Problem 6 you plotted the DFT of a signal. Now use this result to plot the Fourier series coefficients
(i.e. the ck in DTFS−1) of this discrete-time signal (both real and imaginary components). Plot your
results on the same x axis used in Problem 7. Again you might find MATLAB’s fftshift useful
here. A little hint: Do you think you’ll have to scale your DFT result in order to get the right value?
Compare the expressions for DFT and DTFS−1.

Problem 9 In Problem 6 you plotted the DFT of a signal. But we can use this to also approximate the FT of
a continuous version of that signal. Do so for the sine signal you’ve been analyzing throughout this
lab. Plot your result over the interval − fs/2 to fs/2 (I’m not picky about < and ≤) and just show the
imaginary spectrum. Again subjecting your DFT to fftshift should be helpful and keep scaling in
mind too!

Problem 10 Show the expression for the FT (I don’t need to see a derivation, but it would probably be helpful for
you to do it as I might ask this on a test) of a rectangular pulse with a height of 1 and a duration of T
seconds.

Problem 11 Use the DFT (i.e. fft in MATLAB) to plot the absolute value of the FT of a rectangular pulse of
height 1 and duration of 2-µs (microseconds). On the same plot draw (using the computer, not by
hand) the theoretically expected result (one useful MATLAB command for getting multiple curves on
one plot is hold). Hint: Your DFT-based calculation and the theoretical result better be really close.
You’ll probably have to scale your raw DFT result and shift it. It’s up to you to figure out by how much.

7 Filtering

We have only very basic things to say about filtering. Recall that the output of a continuous-time filter can be
expressed as the convolution of that filter’s input signal, xc(t), and its impulse response h(t),

y(t) = h(t)∗ xc(t) =
∫

∞

−∞

h(τ)xc(t− τ)dτ =
∫

∞

−∞

h(t− τ)xc(τ)dτ (14)

The FT of the impulse response defines the frequency response of the filter. That is

H( jω) =
∫

∞

−∞

h(t)e− jωtdt (15)

The FT’s of the input and output signals can further be related via

Y ( jω) = H( jω)Xc( jω) (16)

The same ideas apply to discrete-time systems whose impulse responses are now considered in terms of the
DTFT.

y[n] = h[n]∗ x[n] =
∞

∑
k=−∞

h[k]x[n− k] (17)

H(e jΩ) =
∞

∑
n=−∞

h[n]e− jΩn (18)

Y (e jΩ) = H(e jΩ)X(e jΩ) (19)

Problem 12 Calculate by hand the impulse response, h[n], of a discrete-time filter whose frequency response is 1
for |Ω| ≤ 0.3π and 0 for 0.3π < |Ω| ≤ π .
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In MATLAB once you have the impulse response, h[n], of your desired filter you can employ the filter
function to see the effect. In particular if you can get your filter’s response to any input signal if you use the
line

y = filter(b,1,x)

where b is your whole impulse response h[n] and x is your input sequence x[n] and y is your output sequence
y[n].

Of course if h[n] is infinite you will have to truncate it somewhere as MATLAB obviously can’t handle
infinitely long vectors.

Problem 13 Compute (e.g. with MATLAB) and plot (on the same plot) the magnitude of the DT (i.e. discrete-
time) frequency response from 0 to π (i.e. just show the single-sided frequency response) for the filter
described in Problem 12 when only L = 11,23,51 samples of the impulse response h[n] are retained.
Comment on the results. (Note, there’s no need to use the filter function for this problem.)

Problem 14 Confirm that the filter for L = 23 from Problem 13 works. Excite it with

x[n] = 2 · cos
(

π

10
n
)
+5 · sin

(
2π

3
n
)

(20)

and show that at least qualitatively the response is expected by examining the spectrum of the output,
y[n]. Show this by plotting the absolute value of the DTFT of the filter’s input and output signals on
the same graph. As always clearly label which curve is which (the MATLAB function legend may
be helpful in this regard). In this problem you should also be using the filter function.


