Concurrent Red-Black Trees

Franck van Breugel

DisCoVeri Group
Department of Electrical Engineering and Computer Science
York University, Toronto

October 27, 2015

Franck van Breugel Concurrent Red-Black Trees

Red-Black Tree

A red-black tree is a binary search tree the nodes of which are
coloured either red or black and

@ the root is black,
@ every leaf is black,
@ if a node is red, then both its children are black,

@ for every node, every path from that node to a leaf contains
the same number of black nodes.

[Bayer, 1972] and [Guibas and Sedgewick, 1978]

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

5 || print(contains(1)))

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

1[add(3); j

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

+ [add (3);
> |add (1);

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

1 |add(3);
2 [add(1);
3 | (add(2) || print(contains(1)))

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

1 |add(3);
2 [add(1);
3 | (add(2) || print(contains(1)))

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

1 |add(3);
2 [add(1);
3 | (add(2) || print(contains(1)))

Franck van Breugel Concurrent Red-Black Trees

Concurrent Operations on a Red-Black Tree

Can we reproduce this interleaving?

@ One Intel Pentium M processor, 1.6 GHz, Windows XP
Prints true: 1000000, prints false: 0

@ Two Intel Pentium 4 processors, 3 GHz, Linux 2.6.9
Prints true: 999997, prints false: 3

@ Eight Intel Xeon processors, 2.66 GHz, Linux 2.6.9
Prints true: 1000000, prints false: 0

@ Two AMD Athlon 64 X2 Dual Core processors, 2.2 GHz,
Linux 2.6.9
Prints true: 999999, prints false: 1

@ Eight Intel Xeon Ten Core processors, 2.27 GHz, Linux
2.6.18
Prints true: 999947, prints false: 53

Franck van Breugel Concurrent Red-Black Trees

Three Implementations

T

<interface>
Set

+ contains(T) : boolean
+ add(T) : boolean

-

|

|
|
Il

RedBlackTree

+ contains(T) : boolean
+ add(T) : boolean

Franck van Breugel Concurrent Red-Black Trees

The Monitor Solution

package monitor;

.
2
s public class RedBlackTree<T extends Comparable<T>>
4 implements Set<T>
5
{
6 public synchronized boolean contains (T element)
o
8
o}
10
1 public synchronized boolean add(T element)
12 {
13
14 }
15}

Franck van Breugel Concurrent Red-Black Trees

The Readers-Writers Solution

<interface>
ReadWriteLock

+ readlLock : Lock
+ writeLock : Lock

|
!
!
|
|
|
Il

. <interface>
ReentrantReadWriteLock Lock
Ko
+ readlLock : Lock 2
. j + lock()
+ writeLock : Lock B

Franck van Breugel Concurrent Red-Black Trees

The Readers-Writers Solution

private ReadWriteLock lock;

public RedBlackTree ()
{

.
2
3
4
5 this.lock = new ReentrantReadWriteLock ();
6
7
8
9

}

public boolean contains (T element)

10 {
11 this.lock.getReadLock (). lock ();

13 this.lock.getReadLock (). unlock ();
14 }

Franck van Breugel Concurrent Red-Black Trees

Locking Nodes

Processes lock the nodes of the red-black tree in three different
ways:

@ p-lock: lock to read

@ a-lock: lock to exclude writers

@ ¢-lock: exclusive lock
Although a node can be locked by multiple processes, there are

some restrictions.
ﬁ o @

Franck van Breugel Concurrent Red-Black Trees

Locking Nodes

.
2 {

3 private
4 private
5

6

7 public
8 public
9 public
10 public
11 public
12 public
13 }

int
int

void
void
void
void
void
void

public class Node<T>

containers;
state;

private boolean writing;

readLock () { ... }
readUnIock() { ...}
writeLock () { ... }
writeUnock () { . }
exclusivelLock ({ N
exclumveUnIock() { ...}

Franck van Breugel Concurrent Red-Black Trees

Sequential Test

tree < empty red—black tree
set + empty set
do many times
element < random element
check whether contains(element) returns
the same result for tree and set
check whether add(element) returns
the same result for tree and set
check whether tree is a red-—black tree

© o] N o O LN O] N =

Implemented using JUnit.

Franck van Breugel Concurrent Red-Black Trees

Concurrent Tests

1 tree < empty red—black tree

> do many times concurrently

3 do many times

4 element < random element

5 add(element)

s check whether tree is a red—black tree

Franck van Breugel Concurrent Red-Black Trees

Concurrent Tests

1 tree < empty red—black tree

» do many times concurrently

3 do many times

4 element «+ random even element

5 add(element)

6 do many times

7 element < random odd element

8 check whether contains(element) returns false
s check whether tree is a red—black tree

Franck van Breugel Concurrent Red-Black Trees

Concurrent Tests

© 0 N o O A~ W n -

-
o

tree + empty red—black tree
for element =1, ..., n
add (element)
do many times concurrently
do many times
element < random even element
add(element)
for element =1, ..., n
check whether contains(element) returns true
check whether tree is a red—black tree

Franck van Breugel Concurrent Red-Black Trees

Looking Ahead

@ Debug the implementation that locks individual nodes.
@ Measure the throughput of the three implementations.

Franck van Breugel Concurrent Red-Black Trees

