
CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Concurrent Singly-Linked Lists

Amgad Rady

DisCoVeri Group
Department of Electrical Engineering and Computer Science

York University

November 10, 2015

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Outline

1 Why Harris’s algorithm?

2 Recall Harris’s algorithm
Deletion
The Problem of Concurrent Insertion and Deletion
Solution: Marking the Node

3 Implementation
Basic Types
The public methods
The SEARCH method

4 Testing

5 Conclusion Future Work

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Difficulties with Fomitchev and Ruppert’s
algorithm

No good solution for the ABA problem arising from
decoupling COMPARE&SET and READ operations.
AtomicStampedReference<V> is slow due to being
implemented as a boxed [reference, integer] pair.
The problem of adversarial scheduling Fomitchev and
Ruppert’s algorithm is unlikely to be encountered in
practice.
There would be a significant performance penalty in
having two operations on shared memory.
Perhaps the most important reason...

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Difficulties with Fomitchev and Ruppert’s
algorithm

No good solution for the ABA problem arising from
decoupling COMPARE&SET and READ operations.
AtomicStampedReference<V> is slow due to being
implemented as a boxed [reference, integer] pair.
The problem of adversarial scheduling Fomitchev and
Ruppert’s algorithm is unlikely to be encountered in
practice.
There would be a significant performance penalty in
having two operations on shared memory.
Perhaps the most important reason...

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Difficulties with Fomitchev and Ruppert’s
algorithm

No good solution for the ABA problem arising from
decoupling COMPARE&SET and READ operations.
AtomicStampedReference<V> is slow due to being
implemented as a boxed [reference, integer] pair.
The problem of adversarial scheduling Fomitchev and
Ruppert’s algorithm is unlikely to be encountered in
practice.
There would be a significant performance penalty in
having two operations on shared memory.
Perhaps the most important reason...

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Difficulties with Fomitchev and Ruppert’s
algorithm

No good solution for the ABA problem arising from
decoupling COMPARE&SET and READ operations.
AtomicStampedReference<V> is slow due to being
implemented as a boxed [reference, integer] pair.
The problem of adversarial scheduling Fomitchev and
Ruppert’s algorithm is unlikely to be encountered in
practice.
There would be a significant performance penalty in
having two operations on shared memory.
Perhaps the most important reason...

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Difficulties with Fomitchev and Ruppert’s
algorithm

No good solution for the ABA problem arising from
decoupling COMPARE&SET and READ operations.
AtomicStampedReference<V> is slow due to being
implemented as a boxed [reference, integer] pair.
The problem of adversarial scheduling Fomitchev and
Ruppert’s algorithm is unlikely to be encountered in
practice.
There would be a significant performance penalty in
having two operations on shared memory.
Perhaps the most important reason...

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The Real Reason to Implement Harris’s
Algorithm

I found it too difficult then to implement Fomitchev and
Ruppert’s algorithm.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

SLL Operations: INSERT

Inserting the node containing 2 into the list {1,3,4}. First,
find the appropriate successor for 2 by searching the list
from the head.

1

2

3 4

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

SLL Operations: INSERT

Inserting the node containing 2 into the list {1,3,4}. Next,
swing the pointer from the predecessor (1) to the node (2).

1

2

3 4

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

SLL Operations: DELETE

Deleting the node containing 2 from the list {1,2,3,4}. First,
find the node’s predecessor by searching the list from the
head.

1 2 3 4

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

SLL Operations: DELETE

Deleting the node containing 2 from the list {1,2,3,4}.
Next, swing (2)’s predecessor’s pointer to (2)’s successor.

1 2 3 4

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Concurrent INSERT and DELETE

We delete the node (2) and insert the node (3) concurrently
into the list {1,2,4}.

1 2

3

4

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Concurrent INSERT and DELETE

The resulting list is {1,4}, rather than the correct {1,3,4}.

1 2

3

4

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

DELETE Procedure

Deleting the node containing 2 from the list {1,2,3,4}.
Mark the node.

1 2 3 4

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

DELETE Procedure

Deleting the node containing 2 from the list {1,2,3,4}.
Mark the node.

1 2 3 4

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Node and SinglyLinkedList

The overarching class is SinglyLinkedList and it
contains two classes:
A Node class representing a node in the linked list.
A Pair class representing a pair of nodes (this is
needed by the SEARCH method.)

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Node and SinglyLinkedList

The overarching class is SinglyLinkedList and it
contains two classes:
A Node class representing a node in the linked list.
A Pair class representing a pair of nodes (this is
needed by the SEARCH method.)

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Node and SinglyLinkedList

The overarching class is SinglyLinkedList and it
contains two classes:
A Node class representing a node in the linked list.
A Pair class representing a pair of nodes (this is
needed by the SEARCH method.)

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The Node class

The Node class contains two fields: key and next .
The key field is of type int and represents the key
stored in the node. It is a final variable.
The next field is of type
AtomicMarkableReference<Node> and is the pointer
to the next node in the list. It is volatile.
In addition, we have the usual constructor, getters and
setters.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The Node class

The Node class contains two fields: key and next .
The key field is of type int and represents the key
stored in the node. It is a final variable.
The next field is of type
AtomicMarkableReference<Node> and is the pointer
to the next node in the list. It is volatile.
In addition, we have the usual constructor, getters and
setters.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The Node class

The Node class contains two fields: key and next .
The key field is of type int and represents the key
stored in the node. It is a final variable.
The next field is of type
AtomicMarkableReference<Node> and is the pointer
to the next node in the list. It is volatile.
In addition, we have the usual constructor, getters and
setters.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The Node class

The Node class contains two fields: key and next .
The key field is of type int and represents the key
stored in the node. It is a final variable.
The next field is of type
AtomicMarkableReference<Node> and is the pointer
to the next node in the list. It is volatile.
In addition, we have the usual constructor, getters and
setters.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The FIND method

The find method is of type int −→ boolean
The method returns true if at some specific point
between the invocation of the method and its response,
the key k it was given as input is in the list.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The FIND method

The find method is of type int −→ boolean
The method returns true if at some specific point
between the invocation of the method and its response,
the key k it was given as input is in the list.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The FIND method

The find method is of type int −→ boolean
The method returns true if at some specific point
between the invocation of the method and its response,
the key k it was given as input is in the list.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The FIND method

public boolean f i n d (i n t key) {
Node r ight_node ;

r igh t_node = search (key) . ge tR igh t () ;
i f ((r igh t_node == t a i l) | |

(r igh t_node . getKey () != key)) {
return fa lse ; }

else { return true ; }
}

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The INSERT method

The insert method is of type int −→ boolean
The method returns true if it succeeds in inserting its
key into the list and maintaining the ordering at some
specific point between its invocation and response.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The INSERT method

The insert method is of type int −→ boolean
The method returns true if it succeeds in inserting its
key into the list and maintaining the ordering at some
specific point between its invocation and response.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The INSERT method

The insert method is of type int −→ boolean
The method returns true if it succeeds in inserting its
key into the list and maintaining the ordering at some
specific point between its invocation and response.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The INSERT method

public boolean i n s e r t (i n t key) {
Node new_node = new Node(key) ,
le f t_node , r igh t_node ;
Pa i r p a i r ;
do {

p a i r = search (key) ;
\ \ I f r igh t_node conta ins the key ,
\ \ return fa lse .
\ \ Po in t new_node ’ s next to r igh t_node
\ \ Attempt to swing le f t_node ’ s next to
\ \ new_node . Break i f success fu l .
} while (true) ;

}

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The INSERT method

The delete method is of type int −→ boolean
The method returns true if it succeeds in deleting its
key into the list and maintaining the ordering at some
specific point between its invocation and response.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The INSERT method

The delete method is of type int −→ boolean
The method returns true if it succeeds in deleting its
key into the list and maintaining the ordering at some
specific point between its invocation and response.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The INSERT method

The delete method is of type int −→ boolean
The method returns true if it succeeds in deleting its
key into the list and maintaining the ordering at some
specific point between its invocation and response.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The INSERT method

The insert method is of type int −→ boolean
The method returns true if it succeeds in inserting its
key into the list and maintaining the ordering at some
specific point between its invocation and response.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The INSERT method

The insert method is of type int −→ boolean
The method returns true if it succeeds in inserting its
key into the list and maintaining the ordering at some
specific point between its invocation and response.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The INSERT method

The insert method is of type int −→ boolean
The method returns true if it succeeds in inserting its
key into the list and maintaining the ordering at some
specific point between its invocation and response.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The DELETE method

public boolean de le te (i n t key) {
while (true) {
get the l e f t and r i g h t nodes using search .
l e t r igh t_node_next = r ight_node . next
Attempt to mark r ight_node_next . }
Attempt to swing le f t_node . next to
r ight_node_next .
}

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The SEARCH method

The search method is of type int −→ boolean
The method returns a pair of nodes ‘left’ and ‘right’
such that left_node.next = right_node and
right_node.key ≤ k at some specific point between its
invocation and response.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The SEARCH method

The search method is of type int −→ boolean
The method returns a pair of nodes ‘left’ and ‘right’
such that left_node.next = right_node and
right_node.key ≤ k at some specific point between its
invocation and response.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The SEARCH method

The search method is of type int −→ boolean
The method returns a pair of nodes ‘left’ and ‘right’
such that left_node.next = right_node and
right_node.key ≤ k at some specific point between its
invocation and response.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The SEARCH method

private Pai r search (i n t key) {
1 . Find le f t_node and r ight_node .

2 . Check t h a t the nodes are p h y s i c a l l y ad jacent .
I f so , check t h a t the re ference i s not marked .
I f so , return them ; i f not , goto 1

3. I f the nodes are not p h y s i c a l l y ad jacent
swing l e f t ’ s p o i n t e r to r i g h t . Check t h a t
the new p o i n t e r i s not marked , same as 2.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Correctness Tests

I cribbed the RedBlackTreeTest class and modified it to
work on SLL’s to do preliminary correctness testing.
All those tests passed on the first try!
I implemented further ad hoc tests to check correctness
by constructing Adder and Deleter threads and
observing by their behaviour ‘print debugging’.
Not elegant, but instructive. The expected properties
were validated by these tests (e.g. inserting the same
element multiple times succeeds only once, inserting
an element and deleting it multiple times succeeds only
once, etc.)
However, some oddities emerged...

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Correctness Tests

I cribbed the RedBlackTreeTest class and modified it to
work on SLL’s to do preliminary correctness testing.
All those tests passed on the first try!
I implemented further ad hoc tests to check correctness
by constructing Adder and Deleter threads and
observing by their behaviour ‘print debugging’.
Not elegant, but instructive. The expected properties
were validated by these tests (e.g. inserting the same
element multiple times succeeds only once, inserting
an element and deleting it multiple times succeeds only
once, etc.)
However, some oddities emerged...

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Correctness Tests

I cribbed the RedBlackTreeTest class and modified it to
work on SLL’s to do preliminary correctness testing.
All those tests passed on the first try!
I implemented further ad hoc tests to check correctness
by constructing Adder and Deleter threads and
observing by their behaviour ‘print debugging’.
Not elegant, but instructive. The expected properties
were validated by these tests (e.g. inserting the same
element multiple times succeeds only once, inserting
an element and deleting it multiple times succeeds only
once, etc.)
However, some oddities emerged...

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Correctness Tests

I cribbed the RedBlackTreeTest class and modified it to
work on SLL’s to do preliminary correctness testing.
All those tests passed on the first try!
I implemented further ad hoc tests to check correctness
by constructing Adder and Deleter threads and
observing by their behaviour ‘print debugging’.
Not elegant, but instructive. The expected properties
were validated by these tests (e.g. inserting the same
element multiple times succeeds only once, inserting
an element and deleting it multiple times succeeds only
once, etc.)
However, some oddities emerged...

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Correctness Tests

I cribbed the RedBlackTreeTest class and modified it to
work on SLL’s to do preliminary correctness testing.
All those tests passed on the first try!
I implemented further ad hoc tests to check correctness
by constructing Adder and Deleter threads and
observing by their behaviour ‘print debugging’.
Not elegant, but instructive. The expected properties
were validated by these tests (e.g. inserting the same
element multiple times succeeds only once, inserting
an element and deleting it multiple times succeeds only
once, etc.)
However, some oddities emerged...

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Correctness Tests

Java’s cyclic barrier appears to maintain a large degree
of ordering by constructing time of the thread.
On Add/Delete tests with 2500 of each thread, the
same list is nearly always returned.
This remains the case even when the threads are
shuffled.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Correctness Tests

Java’s cyclic barrier appears to maintain a large degree
of ordering by constructing time of the thread.
On Add/Delete tests with 2500 of each thread, the
same list is nearly always returned.
This remains the case even when the threads are
shuffled.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Correctness Tests

Java’s cyclic barrier appears to maintain a large degree
of ordering by constructing time of the thread.
On Add/Delete tests with 2500 of each thread, the
same list is nearly always returned.
This remains the case even when the threads are
shuffled.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Try and understand the odd behaviour of these test
cases.
Implement F&R’s algorithm (which should now be
possible) and compare its performance against Harris’s
algorithm.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

Try and understand the odd behaviour of these test
cases.
Implement F&R’s algorithm (which should now be
possible) and compare its performance against Harris’s
algorithm.

CSE6490A
Presentation

Amgad Rady

Why Harris’s
algorithm?

Recall Harris’s
algorithm
Deletion

The Problem of
Concurrent Insertion
and Deletion

Solution: Marking the
Node

Implementation
Basic Types

The public methods

The SEARCH method

Testing

Conclusion
Future Work

The End

Questions?

	Why Harris's algorithm?
	Recall Harris's algorithm
	Deletion
	The Problem of Concurrent Insertion and Deletion
	Solution: Marking the Node

	Implementation
	Basic Types
	The public methods
	The search method

	Testing
	Conclusion Future Work

