
Question

private static int i = 0;
private static int j = 0;

public static void write() {
i++; j++;

}
public static void read() {
System.out.println("i=" + i + " j=" + j);

}

One thread repeatedly invokes write whereas another thread
repeatedly invokes read. When executing read, can it ever be
the case that the value of j is greater than the value of i?

Answer
Yes.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 1 / 22

https://wiki.cse.yorku.ca/course/6490A


Question

private static int i = 0;
private static int j = 0;

public static synchronized void write() {
i++; j++;

}
public static synchronized void read() {
System.out.println("i=" + i + " j=" + j);

}

One thread repeatedly invokes write whereas another thread
repeatedly invokes read. When executing read, can it ever be
the case that the value of j is greater than the value of i?

Answer
No.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 2 / 22

https://wiki.cse.yorku.ca/course/6490A


Static synchronized methods

With each class C is associated an object C.class.

To execute a static synchronized method of class C, first the
lock associated with the object C.class has to be obtained.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 3 / 22

https://wiki.cse.yorku.ca/course/6490A


Question

private static volatile int i = 0;
private static volatile int j = 0;

public static void write() {
i++; j++;

}
public static void read() {
System.out.println("i=" + i + " j=" + j);

}

One thread repeatedly invokes write whereas another thread
repeatedly invokes read. When executing read, can it ever be
the case that the value of j is greater than the value of i?

Answer
No.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 4 / 22

https://wiki.cse.yorku.ca/course/6490A


Volatile

An attribute may be declared volatile, in which case the Java
memory model ensures that all threads see a consistent value
for the attribute.

We will come back to the Java memory model later in the
course.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 5 / 22

https://wiki.cse.yorku.ca/course/6490A


Final

Question
When should you declare an attribute final?

Answer
Whenever you can.

When the constructor exits, the values of final attributes are
guaranteed to be visible to other threads accessing the
constructed object.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 6 / 22

https://wiki.cse.yorku.ca/course/6490A


Readers-writers problem

public class Database
{

private int activeReaders;
private boolean writing;

public Database() {
this.activeReaders = 0;
this.writing = false;

}

public void read() {

}

public void write() {

}
} https://wiki.cse.yorku.ca/course/6490A CSE 6490A 7 / 22

https://wiki.cse.yorku.ca/course/6490A


Synchronized blocks

synchronized(o) {
...

}

Before executing the block of code, the lock of the object o
needs to be acquired.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 8 / 22

https://wiki.cse.yorku.ca/course/6490A


Producer-consumer problem

public class BoundedBuffer<T> {
private final Object[] content;
private int size;
private int next;

public BoundedBuffer(int capacity) {
this.content = new Object[capacity];
this.size = 0;
this.next = 0;

}

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 9 / 22

https://wiki.cse.yorku.ca/course/6490A


Producer-consumer problem

public synchronized void put(T value) {
this.content[this.next] = value;
this.size++;
this.next =
(this.next + 1) % this.content.length;

}

public synchronized T get() {
int index =
(this.next - this.size) % this.content.length;

T value = (T) this.content[index];
this.size--;
return value;

}

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 10 / 22

https://wiki.cse.yorku.ca/course/6490A


Concurrent Object Oriented Languages
java.util.concurrent.locks

https://wiki.cse.yorku.ca/course/6490A

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 11 / 22

https://wiki.cse.yorku.ca/course/6490A
https://wiki.cse.yorku.ca/course/6490A


java.util.concurrent.locks

The package java.util.concurrent.locks contains the iterfaces
Condition
Lock
ReadWriteLock

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 12 / 22

https://wiki.cse.yorku.ca/course/6490A


Lock

The interface Lock is implemented by the classes
ReentrantLock
ReentrantReadWriteLock.ReadLock
ReentrantReadWriteLock.WriteLock

It provides more flexibility than synchronized methods and
synchronized blocks.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 13 / 22

https://wiki.cse.yorku.ca/course/6490A


Lock

The Lock interface contains the methods
lock(): acquire this lock
unlock(): release this lock
newCondition(): returns a condition variable bound this
lock

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 14 / 22

https://wiki.cse.yorku.ca/course/6490A


Lock chaining

Node parent = null;
Node node = this.getRoot();
node.lock()
while (!node.isLeaf())
{

parent = node;
node = node.getLeft();
node.lock();
parent.unlock();

}
node.unlock();

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 15 / 22

https://wiki.cse.yorku.ca/course/6490A


Locks and Exceptions

Lock lock = ...;
lock.lock();
try
{

...
}
finally
{

lock.unlock();
}

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 16 / 22

https://wiki.cse.yorku.ca/course/6490A


Condition

The Condition interface contains the methods
await(): causes the current thread to wait on this condition
signal(): wakes up one thread waiting on this condition
signalAll(): wakes up all threads waiting on this condition

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 17 / 22

https://wiki.cse.yorku.ca/course/6490A


Condition

The interface Condition is implemented by the classes
AbstractQueuedLongSynchronizer.ConditionObject
AbstractQueuedSynchronizer.ConditionObject

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 18 / 22

https://wiki.cse.yorku.ca/course/6490A


The producer-consumer problem

Problem
Implement the class BoundedBuffer and its methods put and
get using Locks and Conditions.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 19 / 22

https://wiki.cse.yorku.ca/course/6490A


ReadWriteLock

The interface ReadWriteLock contains the methods
readLock(): the lock used for reading
writeLock(): the lock used for writing

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 20 / 22

https://wiki.cse.yorku.ca/course/6490A


ReadWriteLock

The interface ReadWriteLock is implemented by the class
ReentrantReadWriteLock.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 21 / 22

https://wiki.cse.yorku.ca/course/6490A


The readers-writers problem

Problem
Implement the class Database and its methods read and write
using ReadWriteLocks.

https://wiki.cse.yorku.ca/course/6490A CSE 6490A 22 / 22

https://wiki.cse.yorku.ca/course/6490A

