Question
private static int i = O;
private static int j = O;

public static void write() {
i++; J++;

}

public static void read() {
System.out.println("i=" + i + " j=" + j);

}

One thread repeatedly invokes write whereas another thread

repeatedly invokes read. When executing read, can it ever be
the case that the value of 5 is greater than the value of i?

CSE 6490A

1/22


https://wiki.cse.yorku.ca/course/6490A

Question
private static int i = O;
private static int j = O;

public static synchronized void write() {
i++; J++;

}

public static synchronized void read() {
System.out.println("i=" + i + " j=" + j);

}

One thread repeatedly invokes write whereas another thread

repeatedly invokes read. When executing read, can it ever be
the case that the value of 5 is greater than the value of i?

CSE 6490A

2/22


https://wiki.cse.yorku.ca/course/6490A

Static synchronized methods

With each class c is associated an object C.class.

To execute a static synchronized method of class c, first the
lock associated with the object €. class has to be obtained.

CSE 6490A 3/22


https://wiki.cse.yorku.ca/course/6490A

Question

private static volatile int i = O;
private static volatile int j

I
o
~

public static void write() {
i++; J++;

}

public static void read() {
System.out.println("i=" + i + " j=" + j);

}

One thread repeatedly invokes write whereas another thread

repeatedly invokes read. When executing read, can it ever be
the case that the value of 5 is greater than the value of i?

CSE 6490A 4/22


https://wiki.cse.yorku.ca/course/6490A

Volatile

An attribute may be declared volatile, in which case the Java
memory model ensures that all threads see a consistent value
for the attribute.

We will come back to the Java memory model later in the
course.

CSE 6490A 5/22


https://wiki.cse.yorku.ca/course/6490A

When should you declare an attribute final? \
Whenever you can. I

When the constructor exits, the values of final attributes are
guaranteed to be visible to other threads accessing the
constructed object.

CSE 6490A 6/22


https://wiki.cse.yorku.ca/course/6490A

Readers-writers problem

public class Database

{
private int activeReaders;
private boolean writing;

public Database () {

this.activeReaders = 0;
this.writing = false;

public void read() ({

public void write() {

CSE 6490A 7/22


https://wiki.cse.yorku.ca/course/6490A

Synchronized blocks

synchronized (o) {

}

Before executing the block of code, the lock of the object o
needs to be acquired.

CSE 6490A 8/22


https://wiki.cse.yorku.ca/course/6490A

Producer-consumer problem

public class BoundedBuffer<T> ({
private final Object[] content;
private int size;
private int next;

public BoundedBuffer (int capacity) {
this.content = new Object[capacity];
this.size = 0;
this.next = 0;

CSE 6490A 9/22


https://wiki.cse.yorku.ca/course/6490A

Producer-consumer problem

public synchronized void put (T value) ({
this.content[this.next] = wvalue;
this.size++;
this.next =
(this.next + 1) % this.content.length;

public synchronized T get () {
int index =
(this.next - this.size) % this.content.length;
T value = (T) this.content[index];
this.size——;
return value;

CSE 6490A 10/22


https://wiki.cse.yorku.ca/course/6490A

Concurrent Object Oriented Languages

java.util.concurrent.locks

https://wiki.cse.yorku.ca/course/6490A

CSE 6490A 11/22


https://wiki.cse.yorku.ca/course/6490A
https://wiki.cse.yorku.ca/course/6490A

java.util.concurrent.locks

The package java.util.concurrent.locks contains the iterfaces
@ Condition
@ Lock
@ ReadWriteLock

CSE 6490A 12/22


https://wiki.cse.yorku.ca/course/6490A

The interface Lock is implemented by the classes
@ ReentrantLock
@ ReentrantReadWriteLock.ReadlLock
@ ReentrantReadWriteLock.WriteLock

It provides more flexibility than synchronized methods and
synchronized blocks.

CSE 6490A 13/22


https://wiki.cse.yorku.ca/course/6490A

The Lock interface contains the methods
@ lock(): acquire this lock
@ unlock(): release this lock

@ newCondition(): returns a condition variable bound this
lock

CSE 6490A 14/22


https://wiki.cse.yorku.ca/course/6490A

Lock chaining

Node parent = null;
Node node = this.getRoot();
node. lock ()
while ('node.isLeaf())
{
parent = node;
node = node.getLeft ();
node.lock () ;
parent .unlock() ;

}

node.unlock () ;

CSE 6490A 15/22


https://wiki.cse.yorku.ca/course/6490A

Locks and Exceptions

Lock lock = ..
lock.lock();
try

{

A4

}
finally

{
lock.unlock () ;

}

CSE 6490A 16/22


https://wiki.cse.yorku.ca/course/6490A

The Condition interface contains the methods

@ await(): causes the current thread to wait on this condition
@ signal(): wakes up one thread waiting on this condition
@ signalAll(): wakes up all threads waiting on this condition

CSE 6490A 17/22


https://wiki.cse.yorku.ca/course/6490A

The interface Condition is implemented by the classes
@ AbstractQueuedLongSynchronizer.ConditionObject
@ AbstractQueuedSynchronizer.ConditionObject

CSE 6490A 18/22


https://wiki.cse.yorku.ca/course/6490A

The producer-consumer problem

Problem

Implement the class BoundedBuffer and its methods put and
get using Locks and Conditions.

CSE 6490A 19/22


https://wiki.cse.yorku.ca/course/6490A

ReadWriteLock

The interface ReadWriteLock contains the methods
@ readLock(): the lock used for reading
@ writeLock(): the lock used for writing

CSE 6490A 20/22


https://wiki.cse.yorku.ca/course/6490A

ReadWriteLock

The interface ReadWriteLock is implemented by the class
ReentrantReadWriteLock.

CSE 6490A 21/22


https://wiki.cse.yorku.ca/course/6490A

The readers-writers problem

Problem

Implement the class Database and its methods read and write
using ReadWriteLocks.

CSE 6490A 22/22


https://wiki.cse.yorku.ca/course/6490A

