
Question

private static int i = 0;
private static int j = 0;

public static void write() {
i++; j++;

}
public static void read() {
System.out.println("i=" + i + " j=" + j);

}

One thread repeatedly invokes write whereas another thread
repeatedly invokes read. When executing read, can it ever be
the case that the value of j is greater than the value of i?

Answer
Yes.
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Question

private static int i = 0;
private static int j = 0;

public static synchronized void write() {
i++; j++;

}
public static synchronized void read() {
System.out.println("i=" + i + " j=" + j);

}

One thread repeatedly invokes write whereas another thread
repeatedly invokes read. When executing read, can it ever be
the case that the value of j is greater than the value of i?

Answer
No.
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Static synchronized methods

With each class C is associated an object C.class.

To execute a static synchronized method of class C, first the
lock associated with the object C.class has to be obtained.
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Question

private static volatile int i = 0;
private static volatile int j = 0;

public static void write() {
i++; j++;

}
public static void read() {
System.out.println("i=" + i + " j=" + j);

}

One thread repeatedly invokes write whereas another thread
repeatedly invokes read. When executing read, can it ever be
the case that the value of j is greater than the value of i?

Answer
No.
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Volatile

An attribute may be declared volatile, in which case the Java
memory model ensures that all threads see a consistent value
for the attribute.

We will come back to the Java memory model later in the
course.
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Final

Question
When should you declare an attribute final?

Answer
Whenever you can.

When the constructor exits, the values of final attributes are
guaranteed to be visible to other threads accessing the
constructed object.
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Readers-writers problem

public class Database
{

private int activeReaders;
private boolean writing;

public Database() {
this.activeReaders = 0;
this.writing = false;

}

public void read() {

}

public void write() {

}
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Synchronized blocks

synchronized(o) {
...

}

Before executing the block of code, the lock of the object o
needs to be acquired.
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Producer-consumer problem

public class BoundedBuffer<T> {
private final Object[] content;
private int size;
private int next;

public BoundedBuffer(int capacity) {
this.content = new Object[capacity];
this.size = 0;
this.next = 0;

}
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Producer-consumer problem

public synchronized void put(T value) {
this.content[this.next] = value;
this.size++;
this.next =
(this.next + 1) % this.content.length;

}

public synchronized T get() {
int index =
(this.next - this.size) % this.content.length;

T value = (T) this.content[index];
this.size--;
return value;

}
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Concurrent Object Oriented Languages
java.util.concurrent.locks
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java.util.concurrent.locks

The package java.util.concurrent.locks contains the iterfaces
Condition
Lock
ReadWriteLock
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Lock

The interface Lock is implemented by the classes
ReentrantLock
ReentrantReadWriteLock.ReadLock
ReentrantReadWriteLock.WriteLock

It provides more flexibility than synchronized methods and
synchronized blocks.
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Lock

The Lock interface contains the methods
lock(): acquire this lock
unlock(): release this lock
newCondition(): returns a condition variable bound this
lock
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Lock chaining

Node parent = null;
Node node = this.getRoot();
node.lock()
while (!node.isLeaf())
{

parent = node;
node = node.getLeft();
node.lock();
parent.unlock();

}
node.unlock();
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Locks and Exceptions

Lock lock = ...;
lock.lock();
try
{

...
}
finally
{

lock.unlock();
}
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Condition

The Condition interface contains the methods
await(): causes the current thread to wait on this condition
signal(): wakes up one thread waiting on this condition
signalAll(): wakes up all threads waiting on this condition
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Condition

The interface Condition is implemented by the classes
AbstractQueuedLongSynchronizer.ConditionObject
AbstractQueuedSynchronizer.ConditionObject
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The producer-consumer problem

Problem
Implement the class BoundedBuffer and its methods put and
get using Locks and Conditions.
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ReadWriteLock

The interface ReadWriteLock contains the methods
readLock(): the lock used for reading
writeLock(): the lock used for writing
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ReadWriteLock

The interface ReadWriteLock is implemented by the class
ReentrantReadWriteLock.
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The readers-writers problem

Problem
Implement the class Database and its methods read and write
using ReadWriteLocks.
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