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Model checking

Explicit: states and transitions are represented explicitly.

Drawback: the state space of interesting systems is usually
too large to represent explicitly.

Symbolic: (sets of) states and (sets of) transitions are
represented symbolically.

Key idea: exploit the fact that the state space of most
systems is not random.

We focus on one symbolic approach:

BDD based
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Satisfiability

Cook’s theorem

Satisfiability checking of Boolean expressions is NP-complete.
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Stephen Cook
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Source: Jiri Janicek
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Tautology

Theorem

Tautology checking of Boolean expressions is co-NP-complete.
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Disjunctive normal form

Definition

A literal is a variable or its negation.

Definition

A Boolean expression is in disjunctive normal form (DNF) if it is a
disjunction of conjunctions of literals.

Proposition

Any Boolean expression is equivalent to one in DNF.

Proposition

Satisfiability checking of Boolean expressions in DNF is in P.

Proposition

Tautology checking of Boolean expressions in DNF is
co-NP-complete.
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Conjunctive normal form

Definition

A clause is a disjunction of literals.

Definition

A Boolean expression is in conjunctive normal form (CNF) if it is a
conjunction of clauses.

Proposition

Any Boolean expression is equivalent to one in CNF.

Proposition

Satisfiability checking of Boolean expressions in CNF is
NP-complete.

Proposition

Tautology checking of Boolean expressions in CNF is in P.
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If-then-else normal form

Notation

0 : false
1 : true

x → t1, t0 : (x ∧ t1) ∨ (¬x ∧ t0)

Definition

The set of Boolean expressions in if-then-else normal form (INF) is
defined by

t ::= 0 | 1 | x → t, t
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If-then-else normal form

Question

Give a Boolean expression in INF equivalent to x1 ∧ (¬x2 ∨ x3).
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If-then-else normal form

Question

Give a Boolean expression in INF equivalent to x1 ∧ (¬x2 ∨ x3).

Answer

t = x1 → t1, t0
t0 = x2 → t01, t00
t1 = x2 → t11, t10

t00 = x3 → 0, 0
t01 = x3 → 0, 0
t10 = x3 → 1, 1
t11 = x3 → 1, 0
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If-then-else normal form

Shannon’s expansion theorem

For every Boolean expression t and variable x ,

t = x → t[1/x ], t[0/x ].

Proposition

Any Boolean expression is equivalent to one in INF.
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Decision trees

Boolean expressions in INF can be viewed as binary trees known as
decision trees.

Two types of leaves: 0 and 1

0 1

One type of internal nodes: x → t1, t0

x

t0 t1
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Decision trees

Question

Draw the decision tree for the Boolean expression in INF
equivalent to x1 ∧ (¬x2 ∨ x3).
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Decision trees

Question

Draw the decision tree for the Boolean expression in INF
equivalent to x1 ∧ (¬x2 ∨ x3).

Answer

x1

x2 x2

x3 x3 x3 x3

0 0 0 0 1 1 0 1
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If-then-else normal form

t = x1 → t1, t0
t0 = x2 → t01, t00
t1 = x2 → t11, t10

t00 = x3 → 0, 0
t01 = x3 → 0, 0
t10 = x3 → 1, 1
t11 = x3 → 1, 0

Question

Identify all equal subexpressions.
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If-then-else normal form

t = x1 → t1, t0
t0 = x2 → t01, t00
t1 = x2 → t11, t10

t00 = x3 → 0, 0
t01 = x3 → 0, 0
t10 = x3 → 1, 1
t11 = x3 → 1, 0

Question

Identify all equal subexpressions.

Answer

There are multiple occurrences of 0 and 1. Furthermore, t00 and
t01 are equal.
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Binary decision diagram

Question

Identify the equal subtrees in the decision tree for the Boolean
expression in INF equivalent to x1 ∧ (¬x2 ∨ x3).
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Binary decision diagram

Question

Identify the equal subtrees in the decision tree for the Boolean
expression in INF equivalent to x1 ∧ (¬x2 ∨ x3).

Answer

x1

x2 x2

x3 x3 x3

0 1
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Binary decision diagram

Definition

A binary decision diagram (BDD) is a rooted directed acyclic
graph where

two (external) nodes where have out-degree zero and are
labelled 0 and 1,

and all other (internal) nodes have out-degree two, with one
outgoing edge called the low edge and the other called the
high edge, and are labelled with a variable.
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Binary decision diagram

Definition

A binary decision diagram (BDD) is a rooted directed acyclic
graph where

two (external) nodes where have out-degree zero and are
labelled 0 and 1,

and all other (internal) nodes have out-degree two, with one
outgoing edge called the low edge and the other called the
high edge, and are labelled with a variable.

Notation

Let u be an internal node.
var(u) denotes the variable with which node u is labelled.
low (u) denotes the successor of node u along its low edge
(corresponding to the case that value of var(u) is low, that is, 0).
high(u) denotes the successor of node u along its high edge
(corresponding to the case that value of var(u) is high, that is, 1).
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Ordered binary decision diagrams

Definition

A BDD is ordered if on all paths through the graph the variables
respect a given linear order x1 < x2 < · · ·< xn.

Question

Is the BDD
x1

x2 x3

x3 x2

0 1

ordered?
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Reduced ordered binary decision diagrams

Definition

An ordered BDD is reduced if

unique: no two distinct internal nodes u and v have the same
variable, low- and high-successor, that is,

if var(v) = var(u), low (v) = low (u), and high(v) = high(u)
then u = v .

non-redundant: no internal node u has identical low- and
high-successor, that is,

low (u) 6= high(u).
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Reduced ordered binary decision diagrams

Question

Is the ordered BDD

x1

x2 x2

x3 x3 x3

0 1

reduced?
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Reduced ordered binary decision diagrams

Question

What is the corresponding reduced ordered BDD?
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Reduced ordered binary decision diagrams

Question

What is the corresponding reduced ordered BDD?

Answer

x1

x2

x3

0 1
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Canonicity lemma

Lemma

For a Boolean expression t with variables x1, x2, . . . , xn and a
linear order x1 < x2 < · · ·< xn, there exists a unique reduced
ordered BDD which is equivalent to t.

For the remainder, we restrict our attention to reduced ordered
BDDs and simply call them BDDs.
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Randal Bryant

member of the National Academy
of Engineering (2003),

recipient of the Paris Kanellakis
Theory and Practice Award (1997)

recipient of the IEEE Emanuel R.
Piore Award (2007)

his paper on BDDs is one of the
most cited computer science papers
(more than 8000 citations) Source: Randal Bryant
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BDDs

Proposition

Satisfiability checking of BDDs is constant time.

Proposition

Tautology checking of BDDs is constant time.
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The variable order matters

Question

Draw the BDD corresponding to

(x1 ∧ x2) ∨ (x3 ∧ x4) ∨ (x5 ∧ x6)

for the variable ordering

x1 < x2 < x3 < x4 < x5 < x6
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The variable order matters

Question

Draw the BDD corresponding to

(x1 ∧ x2) ∨ (x3 ∧ x4) ∨ (x5 ∧ x6)

for the variable ordering

x1 < x4 < x5 < x2 < x3 < x6
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The variable order matters

Theorem

Deciding whether a given variable order is optimal is NP-hard.

Heuristics are used to find good variable orderings. For more
details, see, for example,
I. Wegener. Branching Programs and Binary Decision Diagrams:
Theory and Applications. 2000.
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Data structures for BDDs

The nodes are represented as integers 0, 1, 2, . . . where 0 and 1
represent the leaves labelled 0 and 1.

Given a variable ordering x1 < x2 < · · ·< xn, the variables are
represented by their indices 0, 1, . . . , n.
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Node table

The node table can be viewed as a partial function

T : N→ (N3 ∪N)

which maps the index of a node to the indices of its variable, low-
and high-successor.

u 7→ (v , ℓ, h)

Note that 0 and 1 do not have a low- and high-successor. These
external vertices are assigned a variable index which is n + 1, where
n is the number of variables. (This choice simplifies some of the
algorithms to be discussed later.)
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Operations on node table

init(T ): initializes T to contain only nodes 0 and 1.

u var(u) low (u) high(u)

0 n + 1
1 n + 1
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Operations on node table

u ← add(T , i , ℓ, h): allocate a new node u with attributes (i , ℓ, h).

Question

Given the node table

u var(u) low (u) high(u)

0 n + 1
1 n + 1

what does the operation add(T , 4, 1, 0) return?
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Operations on node table

u ← add(T , i , ℓ, h): allocate a new node u with attributes (i , ℓ, h).

Question

Given the node table

u var(u) low (u) high(u)

0 n + 1
1 n + 1

what does the operation add(T , 4, 1, 0) return?

Answer

2.
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Operations on node table

u ← add(T , i , ℓ, h): allocate a new node u with attributes (i , ℓ, h).

Question

Given the operation add(T , 4, 1, 0) applied to the node table

u var(u) low (u) high(u)

0 5
1 5

what is the resulting node table?
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Operations on node table

u ← add(T , i , ℓ, h): allocate a new node u with attributes (i , ℓ, h).

Question

Given the operation add(T , 4, 1, 0) applied to the node table

u var(u) low (u) high(u)

0 5
1 5

what is the resulting node table?

Answer

u var(u) low (u) high(u)

0 5
1 5

2 4 1 0
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Operations on node table

var(u) : look up the var attribute of u in T
low(u) : look up the low attribute of u in T
high(u) : look up the high attribute of u in T
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Example of node table

Question

Give the node table corresponding to the BDD

x1

x2

x3

0 1
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Example of node table

Answer

u var(u) low (u) high(u)

0 4
1 4

2 3 0 1
3 2 1 2
4 1 0 3
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Inverse of node table

The inverse of the node table can be viewed as a partial function

H : N
3 → N

which maps the indices of the attributes of a node to the index of
the node.

(v , ℓ, h) 7→ u

For all u ≥ 2,

T (u) = (i , ℓ, h) iff H(i , ℓ, h) = u.
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Operations on inverse of node table

init(H) : initializes H to be empty
b ← member (H, i , ℓ, h) : check if (i , ℓ, h) is in H
u ← lookup(H, i , ℓ, h) : find H(i , ℓ, h)

insert(H, i , ℓ, h, u) : make (i , ℓ, h) map to u in H
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Operations on BDDs

Question

Consider the node table T and its inverse H.

Let ℓ and h be indices of nodes uℓ and uh.

Let i be the index of variable xi .
a

Return the index of the node of T corresponding to xi → uh, uℓ

and expand T and H if needed.

aIn the variable ordering, this variable occurs before all variables occurring

in the subgraphs rooted at ℓ and h.
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Operations on BDDs

Mk[T ,H](i , ℓ, h)
i f ℓ = h then

return ℓ
else i f member(H, i , ℓ, h) then

return lookup(H, i , ℓ, h)
else

u ← add(T , i , ℓ, h)
insert(H, i , ℓ, h)
return u
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Operations on BDDs

Question

Consider the node table T and its inverse H. Let t be a Boolean
expression. Return the node of T corresponding to t.
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Operations on BDDs

Build[T ,H](t)
return build(t, 1)

function build(t, i)
i f i > n then

i f t i s fa l se then return 0 else return 1

else

u0 ← (t[0/xi ], i + 1)
u1 ← (t[1/xi ], i + 1)
return Mk(i , u0, u1)
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Operations on BDDs

Proposition

For all Boolean binary operators ⊗,

(x → t1, t0)⊗ (x → u1, u0) = x → t1 ⊗ u1, t0 ⊗ u0.
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Operations on BDDs

Question

Consider the node table T and its inverse H.

Let u1 and u2 be indices of nodes.

Let ⊕ be a Boolean binary operator.

Return the index of the node of T corresponding to u1 ⊕ u2 and
expand T and H if needed.
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Operations on BDDs

Apply[T ,H](⊕, u1, u2)
return app(u1, u2)

function app(u1, u2)
i f u1 ∈ {0, 1} and u1 ∈ {0, 1} then

u ← u1 ⊕ u2

else i f var(u1) = var(u2) then

u ←Mk(var (u1), app(low (u1), low (u2)), app(high(u1), high(u2)))
else i f var(u1) < var(u2) then

u ←Mk(var (u1), app(low (u1), u2), app(high(u1), u2))
else

u ←Mk(var (u2), app(u1, low (u2)), app(u1, high(u2)))
return u
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Operations on BDDs

Apply[T ,H](⊕, u1, u2)
init(G )
return app(u1, u2)

function app(u1, u2)
i f G (u1, u2) 6= empty then return G (u1, u2)
i f u1 ∈ {0, 1} and u1 ∈ {0, 1} then

u ← u1 ⊕ u2

else i f var(u1) = var(u2) then

u ←Mk(var (u1), app(low (u1), low (u2)), app(high(u1), high(u2)))
else i f var(u1) < var(u2) then

u ←Mk(var (u1), app(low (u1), u2), app(high(u1), u2))
else

u ←Mk(var (u2), app(u1, low (u2)), app(u1, high(u2)))
G (u1, u2)← u
return u
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