Concurrent Object Oriented Languages

Synchronous Message Passing

https://wiki.cse.yorku.ca/course/6490A

CSE 6490A 1/17

https://wiki.cse.yorku.ca/course/6490A
https://wiki.cse.yorku.ca/course/6490A

Communicating Sequential Processes (CSP)

C.A.R. Hoare. Communicating se-
quential processes. Communica-
tions of the ACM, 21(8):666-677,
August 1978.

sir Charles Antony Richard (Tony) Hoare

source: cs.ox.ac.uk

CSE 6490A 2/17

https://wiki.cse.yorku.ca/course/6490A

Communicating Sequential Processes (CSP)

C.A.R. Hoare. @ Communicating
Sequential Processes. 1985.

sir Charles Antony Richard (Tony) Hoare

source: cs.ox.ac.uk

CSE 6490A 3/17

https://wiki.cse.yorku.ca/course/6490A

Syntax of CSP

CSP has static process creation.

[name :: command | --- | name :: command]

CSE 6490A 4/17

https://wiki.cse.yorku.ca/course/6490A

Syntax of CSP

CSP uses synchronous message passing to communicate.
@ Receive command

name?pattern

@ Send command

name!expression

CSE 6490A 5/17

https://wiki.cse.yorku.ca/course/6490A

Communication in CSP

What is the result of the following communication?

[sender :: receiver! (1, 2)
| receiver :: sender?(1l,x)]

The variable x is assigned the value 2. l

CSE 6490A 6/17

https://wiki.cse.yorku.ca/course/6490A

Communication in CSP

What is the result of the following communication?

[sender :: receiver! (1, 2)
| receiver :: sender?(3,x) 1

No communication takes place since the expression (1,2) does
not match the pattern (3,x).

CSE 6490A 7/17

https://wiki.cse.yorku.ca/course/6490A

Syntax of CSP

Conditional command

[guard — command [] --- [guard — command]

guard
@ Boolean expression
@ receive command
@ Boolean expression ; receive command

CSE 6490A 8/17

https://wiki.cse.yorku.ca/course/6490A

Syntax of CSP

lteration command

*[guard — command [] --- [J guard — command]

guard
@ Boolean expression
@ receive command
@ Boolean expression ; receive command

CSE 6490A 9/17

https://wiki.cse.yorku.ca/course/6490A

Examples in CSP

Express a semaphore, named semaphore, and a process,
named process, using that semaphore to protect its critical
section in CSP.

CSE 6490A 10/17

https://wiki.cse.yorku.ca/course/6490A

Examples in CSP

Express the consumer-producer problem in CSP. The producer,
named producer, produces the integers 1, ..., 100 and the
consumer, named consumer, prints the integers it consumes.
Both interact with the buffer, named buffer.

CSE 6490A 11/17

https://wiki.cse.yorku.ca/course/6490A

Examples in CSP

Let

reader (i)
* [scheduler!request ();
read();
scheduler!done () 1

writer (i)
* [scheduler!request();
write();
scheduler!done ()]

Implement scheduler to solve the readers-writers problem.

CSE 6490A 12/17

https://wiki.cse.yorku.ca/course/6490A

Examples in CSP

What is wrong with

phil (i)
* [THINK;
fork (i) 'pickup(); fork((i+l) mod N) !pickup();
EAT;
fork (i) 'putdown(); fork((i+l) mod N) !putdown ()

fork (i)
*[phil (i) ?pickup()
— phil (i) ?putdown ()
(] phil ((i-1) mod N) ?pickup ()
— phil ((i-1) mod N) ?putdown ()]

CSE 6490A 13/17

https://wiki.cse.yorku.ca/course/6490A

Examples in CSP

The sieve of Eratosthenes is a
simple, ancient algorithm for find-
ing all prime numbers up to a
specified integer.

source: world.mathigon.org

CSE 6490A 14/17

https://wiki.cse.yorku.ca/course/6490A

Examples in CSP

Processes:

@ generator that generates 2, 3, ...

@ sieve (i), for 1 < i< n, where nis the number of primes
to be generated (sieve (n) is defined differently).

CSE 6490A 15/17

https://wiki.cse.yorku.ca/course/6490A

Examples in CSP

sieve (0)
n = 2;
*[sieve(l)!'n; n =n + 1]

sieve (i)
sieve(i - 1)°?p;
print (p);
*[sieve(i - 1)?n
— [n mod p == 0 — skip

[0 nmod p !'= 0 — sieve(i + 1)!n]

sieve (100)
sieve (99)?p; print (p)

CSE 6490A 16/17

https://wiki.cse.yorku.ca/course/6490A

Assignment 1

Due: October 1

Presentations: October 8 and 13

CSE 6490A 17/17

https://wiki.cse.yorku.ca/course/6490A

