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Communicating Sequential Processes (CSP)

C.A.R. Hoare. Communicating se-
quential processes. Communica-
tions of the ACM, 21(8):666-677,
August 1978.

sir Charles Antony Richard (Tony) Hoare

source: cs.ox.ac.uk
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Communicating Sequential Processes (CSP)

C.A.R. Hoare. @ Communicating
Sequential Processes. 1985.

sir Charles Antony Richard (Tony) Hoare

source: cs.ox.ac.uk
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Syntax of CSP

CSP has static process creation.

[ name :: command | --- | name :: command ]
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Syntax of CSP

CSP uses synchronous message passing to communicate.
@ Receive command

name?pattern

@ Send command

name!expression
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Communication in CSP

What is the result of the following communication?

[ sender :: receiver! (1, 2)
| receiver :: sender?(1l,x) ]

The variable x is assigned the value 2. l

CSE 6490A 6/17


https://wiki.cse.yorku.ca/course/6490A

Communication in CSP

What is the result of the following communication?

[ sender :: receiver! (1, 2)
| receiver :: sender?(3,x) 1

No communication takes place since the expression (1,2) does
not match the pattern (3,x).
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Syntax of CSP

Conditional command

[ guard — command [] --- [ guard — command ]

guard
@ Boolean expression
@ receive command
@ Boolean expression ; receive command
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Syntax of CSP

lteration command

*[ guard — command [] --- [J guard — command ]

guard
@ Boolean expression
@ receive command
@ Boolean expression ; receive command
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Examples in CSP

Express a semaphore, named semaphore, and a process,
named process, using that semaphore to protect its critical
section in CSP.
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Examples in CSP

Express the consumer-producer problem in CSP. The producer,
named producer, produces the integers 1, ..., 100 and the
consumer, named consumer, prints the integers it consumes.
Both interact with the buffer, named buffer.
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Examples in CSP

Let

reader (i)
* [ scheduler!request ();
read();
scheduler!done () 1

writer (i)
* [ scheduler!request();
write();
scheduler!done () ]

Implement scheduler to solve the readers-writers problem.
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Examples in CSP

What is wrong with

phil (i)
* [ THINK;
fork (i) 'pickup(); fork((i+l) mod N) !pickup();
EAT;
fork (i) 'putdown(); fork((i+l) mod N) !putdown ()

fork (i)
*[ phil (i) ?pickup()
— phil (i) ?putdown ()
(] phil ((i-1) mod N) ?pickup ()
— phil ((i-1) mod N) ?putdown () ]
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Examples in CSP

The sieve of Eratosthenes is a
simple, ancient algorithm for find-
ing all prime numbers up to a
specified integer.

source: world.mathigon.org
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Examples in CSP

Processes:

@ generator that generates 2, 3, ...

@ sieve (i), for 1 < i< n, where nis the number of primes
to be generated (sieve (n) is defined differently).
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Examples in CSP

sieve (0)
n = 2;
*[ sieve(l)!'n; n =n + 1 ]

sieve (i)
sieve(i - 1)°?p;
print (p);
*[ sieve(i - 1)?n
— [ n mod p == 0 — skip

[0 nmod p !'= 0 — sieve(i + 1)!n ]

sieve (100)
sieve (99)?p; print (p)
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Assignment 1

Due: October 1

Presentations: October 8 and 13
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