
Concurrent Red-Black Trees

Franck van Breugel
Department of Electrical Engineering and Computer Science, York University

4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3

October 24, 2015

Abstract
In the previous assignment, we presented three concurrent implementations of red-black trees. In this assignment,

we present their implementation in Java. Furthermore, we discuss how we tested our implementations for correctness.

1 Introduction
In [1], we presented three different ways to implement red-black trees concurrently. In all three implementations, we
considered only the operations CONTAINS and ADD. Our first implementation uses monitors. Our second imple-
mentation is an adaptation of a solution of the readers-writers problem. In our third implementation, we adapt the
concurrent implementation of AVL trees by Ellis [3] to the setting of red-black trees.

In this paper, we discuss the implementations of all three in Java. All three Java implementations are based on a
Java implementation of the sequential algorithms for the CONTAINS and ADD operations as can be found in [2]. We
introduce an interface Set that contains the methods contains and add. To avoid name clashes, each implementation
resides in a different package. Each package contains a class RedBlackTree and an inner class Node. The former
implements the interface Set and the latter represents a node of a red-black tree.

The concurrent Java implementation based on monitors is simply obtained from the sequential Java implementation
of red-black trees by making the methods contains and add synchronized. This ensures that no method invocation can
interfere with another one. This amounts to the execution of the method invocations one at a time.

To implement a variation on a solution to the readers-writers problem is Java, we exploit the class ReentrantRead-
WriteLock. This class implements the interface ReadWriteLock. According to the documentation of the Java class
library,1 “a ReadWriteLock maintains a pair of associated locks, one for read-only operations and one for writing. The
read lock may be held simultaneously by multiple reader threads, so long as there are no writers. The write lock is
exclusive.” We use the read lock in the contains method and the write lock in the add method.

The main challenge of the third implementation is the mechanism to lock nodes in different ways. Since the paper
by Ellis [3] does not provide any details, we develop them ourselves. The remainder of the pseudocode can be mapped
to Java in a straightforward way.

In this paper, we also discuss the tests of all three implementations. Since the three concurrent implementations
are based on a sequential implementation, we first test our sequential implementation. In [1], we conjectured that
multiple threads manipulating the sequential implementation of a red-black tree concurrently may lead to counter-
intuitive results. Here, we put that conjecture to the test. Furthermore, we test the correctness of the contains and add
methods in a concurrent settings.

2 The Set Interface
Our interface Set is a simplification of the interface Set which is part of the package java . util . Our interface only
contains the methods contains and add, whereas the one in Java’s standard library contains several other methods. In

1See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html

1

docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html

our setting, a Set cannot contain null whereas a java . util . Set can.

1 package c o l l e c t i o n ;
2

3 /∗ ∗
4 ∗ A s e t o f e l e m e n t s d i f f e r e n t from n u l l .
5 ∗
6 ∗ @author Franck van B r e u g e l
7 ∗ /
8 p u b l i c i n t e r f a c e Set<T ex tends Comparable<T>>
9 {

10 /∗ ∗
11 ∗ T e s t s whe ther t h i s t r e e c o n t a i n s t h e g i v e n e l e m e n t .
12 ∗
13 ∗ @param e l e m e n t t h e e l e m e n t f o r which t o s e a r c h .
14 ∗ @pre . e l e m e n t != n u l l
15 ∗ @return t r u e i f t h i s t r e e c o n t a i n s t h e g i v e n e l e m e n t .
16 ∗ /
17 p u b l i c boolean c o n t a i n s (T e l e m e n t) ;
18

19 /∗ ∗
20 ∗ A t t e m p t s t o add t h e g i v e n e l e m e n t t o t h i s t r e e .
21 ∗ The a t t e m p t i s s u c c e s s f u l i f t h i s t r e e does n o t c o n t a i n
22 ∗ t h e g i v e n e l e m e n t y e t .
23 ∗
24 ∗ @param e l e m e n t t h e e l e m e n t t o be i n s e r t e d .
25 ∗ @pre . e l e m e n t != n u l l
26 ∗ @return t r u e i f t h e a d d i t i o n i s s u c c e s s f u l , f a l s e o t h e r w i s e .
27 ∗ /
28 p u b l i c boolean add (T e l e m e n t) ;
29 }

3 The RedBlackTree and Node Classes
All three implementations consist of two classes: RedBlackTree and Node. Instances of the innerclass Node represent
a node of a red-black tree. An instance of the class RedBlackTree represents a red-black tree. The UML diagram
below contains those attributes and methods that are common to all three implementations.

2

3

�interface�

Set

+ contains(T) : boolean
+ add(T) : boolean

T

RedBlackTree

root : Node〈T〉

+ contains(T) : boolean
+ add(T) : boolean
leftRotate(Node〈T〉)
rightRotate(Node〈T〉)
+ toString() : String

T Node

key : T
left : Node〈T〉
right : Node〈T〉
parent : Node〈T〉
red : boolean

+ isLeaf() : boolean
+ isLeft() : boolean
+ isRight() : boolean
+ toString() : String

T

Note that both the RedBlackTree class and the Node class contain a toString method. This method is useful for
debugging and testing. The methods leftRotate and rightRotate are auxiliary methods to the add method.

4 The Monitors Approach
The monitors approach presented in [1] can be mapped to Java in a straightforward way. The only thing that needs to
be done to turn a sequential implementation of a red-black tree into a concurrent one is make the methods contains
and add synchronized.

1 p u b l i c c l a s s RedBlackTree<T ex tends Comparable<T>> implements Set<T>
2 {
3 . . .
4 p u b l i c synchronized boolean c o n t a i n s (T key)
5 . . .
6 p u b l i c synchronized boolean add (T key)
7 . . .
8 }

5 The Readers-Writers Approach
The key ingredient of this implementation is the the class ReentrantReadWriteLock which implements the interface
ReadWriteLock. A ReadWriteLock has two Locks: a read-lock and a write-lock. The relevant interfaces and classes
and their relationships are given in the UML diagram below.

3

2

�interface�

ReadWriteLock

+ readLock : Lock
+ writeLock : Lock

ReentrantReadWriteLock

+ readLock : Lock
+ writeLock : Lock

�interface�

Lock

+ lock()
+ unlock()

The read-lock is used in the contains method and the write-lock is used in the add method as follows.

1 p u b l i c c l a s s RedBlackTree<T ex tends Comparable<T>> implements Set<T>
2 {
3 p r i v a t e ReadWriteLock l o c k ;
4 . . .
5

6 p u b l i c RedBlackTree ()
7 {
8 t h i s . l o c k = new R e e n t r a n t R e a d W r i t e L o c k () ;
9 . . .

10 }
11

12 p u b l i c boolean c o n t a i n s (T e l e m e n t)
13 {
14 t h i s . l o c k . getReadLock () . l o c k () ;
15 . . .
16 t h i s . l o c k . getReadLock () . un l oc k () ;
17 }
18

19 p u b l i c boolean add (T e l e m e n t)
20 {
21 t h i s . l o c k . g e t W r i t e L o c k () . l o c k () ;
22 . . .
23 t h i s . l o c k . g e t W r i t e L o c k () . un l oc k () ;
24 }
25

26 . . .
27 }

6 The Fine-Grained Locking Approach
Next, we discuss the implementation in Java of our adaptation of the concurrent AVL trees algorithms proposed by
Ellis [3] to red-black trees. Recall that the key idea of this implementation is that individual nodes can be locked in

4

three different ways: ρ-locked, α-locked and ξ-locked. Although threads can hold a lock on the same node, there are
some restrictions. The following graph [3] captures those restrictions.

ρ α ξ

If there is an edge between two lock types, then two threads can have a lock of the given type on a particular node
at the same time. For example, multiple threads can ρ-lock a node and a single thread can α-lock that node all at the
same time.

Most of the pseudocode presented in [1] can be translated into Java in a straightforward way. The most challenging
part of the implementation is the locking and unlocking of the nodes. For that purpose, we add the following methods
to the Node class.

1 p u b l i c synchronized void readLock () { . . . }
2 p u b l i c synchronized void r eadUnlock () { . . . }
3 p u b l i c synchronized void w r i t e L o c k () { . . . }
4 p u b l i c synchronized void wri teUnock () { . . . }
5 p u b l i c synchronized void e x c l u s i v e L o c k () { . . . }
6 p u b l i c synchronized void e x c l u s i v e U n l o c k () { . . . }

The methods readLock and readUnlock correspond to ρ-lock and ρ-unlock, respectively. Furthermore, the methods
writeLock and writeUnlock correspond to α-lock and α-unlock, respectively. Finally, the methods exclusiveLock and
exclusiveUnlock correspond to ξ-lock and ξ-unlock, respectively. All these methods are synchronized since, as we
will see, they manipulate shared data.

In order to implement the locking and unlocking, we keep track of the following data:

• the number of threads that have ρ-locked this node. In order to ξ-lock the node, we need to know that no thread
has ρ-locked it. Hence, we introduce the attribute

1 p r i v a t e i n t r e a d e r s ;

which is initialized to zero.

• whether a thread has α-locked this node. This allows us to ensure that at most one thread α-locks a node. For
that purpose we introduce the attribute

1 p r i v a t e boolean w r i t e ;

which is initialized to false.

• whether a thread has ξ-locked this node. To ensure that a ξ-lock is exclusive we introduce the attribute

1 p r i v a t e boolean e x c l u s i v e ;

which is initialized to false.

The above three attributes capture the state of a node. In the diagram below, we depict how the state of a node changes
by performing locking and unlocking. The numbers correspond to the value of the attribute readers . In the red states,
the attribute write has the value true. In the black states, the attribute exclusive has the value true. Note that if a thread
has α-locked a node, that thread can change it into a ξ-lock. Once the thread ξ-unlocks the node, the node will still
be α-locked. To distinguish between a node whose α-lock was changed into a ξ-lock and a node that was unlocked
before it was ξ-locked, we label the former with an α.

α 0 1 2 . . .

α 0 1 2 . . .

5

The lock and unlock methods are all implemented similarly. Let us only look at the most interesting ones:
exclusiveLock and exclusiveUnlock.

1 p u b l i c synchronized void e x c l u s i v e L o c k ()
2 {
3 whi le (t h i s . r e a d e r s != 0)
4 {
5 t r y
6 {
7 t h i s . w a i t () ;
8 }
9 ca tch (I n t e r r u p t e d E x c e p t i o n e)

10 {
11 System . o u t . p r i n t l n (” w a i t w i t h i n e x c l u s i v e L o c k was i n t e r r u p t e d ”) ;
12 }
13 }
14 t h i s . e x c l u s i v e = t rue ;
15 }
16

17 p u b l i c synchronized void e x c l u s i v e U n l o c k ()
18 {
19 t h i s . e x c l u s i v e = f a l s e ;
20 t h i s . n o t i f y A l l () ;
21 }

7 Testing
First, we test our sequential implementation. In our tests, we check the invariant that the tree is a red-black tree is
maintained. We also check the postcondition of the contains and add method. To run the tests, we use JUnit2.

7.1 Synchronization is Essential
In [1], we conjectured that multiple threads manipulating a red-black tree concurrently using the operations CONTAINS
and ADD may lead to counter-intuitive results. Consider the following concurrent program.

1 ADD (3)
2 ADD (1)
3 (ADD (2) ‖ CONTAINS (1))

We conjectured that by interleaving the elementary operations of the operations ADD and CONTAINS in a particular
way, the operation CONTAINS may return false. We ran the Java counterpart of the above code 1,000,000 times on
several different machines. In the table below, we present the results. The processor column specifies the number of
processors of the machine and the core column describes the number of cores per processor. The columns true and
false return the number of times true and false are returned, respectively.

processor core true false
1 1 1,000,000 0
2 2 999,999 1
2 4 999,997 3
8 1 1,000,000 0
8 10 999,947 53

2www.junit.org

6

www.junit.org

The tests confirm that some form of synchronization is essential to avoid counter-intuitive results as described
above. Note that some machines did not detect the counter-intuitive results.

7.2 Concurrent Tests
We also test the three implementations in three concurrent scenarios. In the first scenario, we start with an empty
red-black tree and create multiple threads. Each thread adds multiple random integers to the tree. Once all threads
have terminated, we check that the tree is still a red-black tree. Also in the second scenario, we start with an empty
red-black tree and create multiple threads. Some threads random add even integers to the tree, whereas other threads
check if the tree contains random odd integers. Again, we check that the tree is still a red-black tree after all the threads
have terminated. In the third a final scenario, we first insert the integers 0, . . . , 100 in a random order. After that we
create multiple threads, some of which add multiple random integers to the tree, and the others check if integers in the
range 0, . . . , 100 are contained in the tree. Also in this case we check that the tree is a red-black tree once all threads
have terminated.

These three scenarios have been implemented, based on the approach described in [4, Chapter 12]. Both the
monitor approach and the readers-writers approach pass all the tests. Unfortunately, the fine-grained locking approach
does not pass any of the tests.

8 Conclusion
In this paper, we have discussed three implementations of concurrent red-black trees. Whereas the first two imple-
mentations are fairly simple modifications of the sequential implementation, the third implementation is considerably
more complicated. It may therefore not come as a surprise that the first two implementations pass all the tests, whereas
the third one does not. More work is needed to debug the latter implementation. We leave this for future work.

References
[1] Franck van Breugel. Concurrent red-black trees. Assignment, January 2015.

[2] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The MIT Press,
Cambridge, MA, USA, 1990.

[3] Carla Schlatter Ellis. Concurrent search and insertion in AVL trees. IEEE Transactions on Computers, 29(9):811–
817, September 1980.

[4] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea. Java Concurrency in
Practice. Addison-Wesley, Upper Saddle River, NJ, USA, 2006.

7

	Introduction
	The Set Interface
	The RedBlackTree and Node Classes
	The Monitors Approach
	The Readers-Writers Approach
	The Fine-Grained Locking Approach
	Testing
	Synchronization is Essential
	Concurrent Tests

	Conclusion

