
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5
th

Edition

Chapter 2

Instructions: Language

of the Computer

COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5
th

Edition

Instructions: Language

of the Computer

- Introduction

- Operations of the Computer Hardware

- Translating and Starting a Program

- Operands of the Computer Hardware

- Signed and Unsigned Numbers

- Representing Instructions in the Computer

- Logical Operations

- Instructions for Making Decisions

- Communicating with People

- MIPS Addressing for 32-Bit Immediates and

Addresses

- Parallelism and Instructions: Synchronization

- A C Sort Example to Put It All Together

- Concluding Remarks

Chapter 2 — Instructions: Language of the Computer — 2

Chapter 2 — Instructions: Language of the Computer — 3

Instruction Set

 The collection of instructions of a computer

 Different computers have different
instruction sets

 But with many aspects in common

 Early computers had very simple
instruction sets

 Simplified implementation

 Many modern computers also have simple
instruction sets

§
2
.1

 In
tro

d
u
c
tio

n

Chapter 2 — Instructions: Language of the Computer — 4

The MIPS Instruction Set

 Used as an example throughout the course

 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)

 Large share of embedded core market

 Applications in consumer electronics, network/storage

equipment, cameras, printers, …

 Typical of many modern ISAs

 See MIPS Reference Data tear-out card, and

Appendices B and E

§
2
.1

 In
tro

d
u
c
tio

n

http://www.mips.com/

Chapter 2 — Instructions: Language of the Computer — 5

Arithmetic Operations

 Add and subtract, three operands

 Two sources and one destination

add a,b,c # a gets b + c

 All arithmetic operations have this form

 Design Principle 1: Simplicity favors

regularity

 Regularity makes implementation simpler

 Simplicity enables higher performance at

lower cost

§
2
.2

 O
p
e
ra

tio
n
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 6

§
2
.2

 O
p
e
ra

tio
n
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 7

Arithmetic Example

 C code:

f = (g + h) - (i + j);

 Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

§
2
.2

 O
p
e
ra

tio
n
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 8

Register Operands

 Arithmetic instructions use register
operands

 MIPS has a 32 by 32-bit register file
 Used for frequently accessed data

 Numbered 0 to 31

 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values

 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 9

Register Operand Example

 C code:

f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4

 Compiled MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 10

Memory Operands

 Main memory used for composite data
 Arrays, structures, dynamic data

 To apply arithmetic operations
 Load values from memory into registers

 Store result from register to memory

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 11

Memory Operands

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian
 Most-significant byte at least address of a word

 c.f. Little Endian: least-significant byte at least address

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

 Data is transferred between memory and register
using data transfer instructions: lw and sw

 $s1 is receiving register

 $s2 is base address of memory, 100 is called the
offset, so ($s2+100) is the address of memory
location

Memory Operands

Chapter 2 — Instructions: Language of the Computer — 11

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 13

Memory Operand Example

 C code:

g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 14

Memory Operand Example

 C code:

A[12] = h + A[8];

 h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 15

Registers vs. Memory

 Registers are faster to access than
memory

 Operating on memory data requires loads
and stores

 More instructions to be executed

 Compiler must use registers for variables
as much as possible

 Only spill to memory for less frequently used
variables

 Register optimization is important!

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 16

Immediate Operands

 Constant data specified in an instruction

 addi $s3, $s3, 4

 No subtract immediate instruction

 Just use a negative constant

addi $s2, $s1, -1

 Design Principle 3: Make the common

case fast

 Small constants are common

 Immediate operand avoids a load instruction

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 17

The Constant Zero

 MIPS register 0 ($zero) is the constant 0

 Cannot be overwritten

 Useful for common operations

 E.g., move between registers

add $t2, $s1, $zero

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 18

Translation and Startup

Many compilers produce

object modules directly

Static linking

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

UNIX: C source files are named x.c, assembly files are x.s, object files are

named x.o, statically linked library routines are x.a, dynamically linked library

routines are x.so, and executable files by default are called a.out

MS-DOS uses the .C, .ASM, .OBJ, .LIB, .DLL, and .EXE to the same effect

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Translation

Assembler (or compiler) translates program

into machine instructions

Linker produces an executable image

Loader loads from image file on disk into

memory

Chapter 2 — Instructions: Language of the Computer — 19

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

SPIM Simulator

SPIM is a software simulator that runs
assembly language programs

SPIM is just MIPS spelled backwards

SPIM can read and immediately execute
assembly language files

Two versions for different machines

 Unix: xspim(used in lab), spim

 PC/Mac: QtSpim

Resources and Download

 http://spimsimulator.sourceforge.net

Chapter 2 — Instructions: Language of the Computer — 20

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

http://spimsimulator.sourceforge.net/

System Calls in SPIM

 SPIM provides a small set of system-like
services through the system call (syscall)
instruction.

 Format for system calls

 Place value of input argument in $a0

 Place value of system-call-code in $v0
 Syscall

Chapter 2 — Instructions: Language of the Computer — 21

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

System Calls

Example: print a string

.data

str: # --------------------

.asciiz “answer is:”

.text
addi $v0,$zero,4
la $a0, str
syscall

Chapter 2 — Instructions: Language of the Computer — 22

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Chapter 2 — Instructions: Language of the Computer — 23

Assembler Pseudoinstructions

 Most assembler instructions represent

machine instructions one-to-one

 Pseudoinstructions: figments of the

assembler’s imagination

move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1

bne $at, $zero, L

 $at (Register 1): assembler temporary

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Chapter 2 — Instructions: Language of the Computer — 24

Assembler Pseudoinstructions

 Pseudoinstructions give MIPS a richer set

of assembly language instructions than

those implemented by the hardware

 Register $at (assembler temporary)

reserved for use by the assembler

 For productivity, use pseudoinstructions

to write assembly programs

 For performance, use real MIPS

instructions

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Reading

 Read Appendix A.9 for SPIM

 List of Pseudoinstructions can be found on

page 235 of book

Chapter 2 — Instructions: Language of the Computer — 25

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Chapter 2 — Instructions: Language of the Computer — 26

Producing an Object Module

 Assembler (or compiler) translates program into
machine instructions

 Provides information for building a complete
program from pieces
 Header: contains size and position of pieces of object

module

 Text segment: translated machine instructions

 Static data segment: data allocated for the life of the
program

 Relocation info: for instructions and data words that
depend on absolute location of loaded program

 Symbol table: global definitions and external refs

 Debug info: for associating with source code

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Chapter 2 — Instructions: Language of the Computer — 27

Linking Object Modules

 Produces an executable file

1. Merges segments

2. Resolves labels (determines their addresses)

3. Patches location-dependent and external refs

 Could leave location dependencies for

fixing by a relocating loader

 But with virtual memory, no need to do this

 Program can be loaded into absolute location

in virtual memory space

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Chapter 2 — Instructions: Language of the Computer — 28

Linking Object Modules
§

2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Chapter 2 — Instructions: Language of the Computer — 29

Linking Object Modules
§

2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Chapter 2 — Instructions: Language of the Computer — 30

Memory Layout

 Text: program code

 Static data: global
variables
 e.g., static variables in C,

constant arrays and strings

 $gp initialized to address
allowing ±offsets into this
segment

 Dynamic data: heap
 e.g., malloc in C, new in

Java

 Stack: automatic storage

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 31

Loading a Program

 Load from file on disk into memory

1. Read header to determine segment sizes

2. Create address space for text and data

3. Copy text and initialized data into memory

4. Set up arguments on stack

5. Initialize registers (including $sp, $fp, $gp)

6. Jump to startup routine

 Copies arguments to $a0, … and calls main

 When main returns, do exit syscall(10)

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Chapter 2 — Instructions: Language of the Computer — 32

Dynamic Linking

 Only link/load library procedure when it is

called

 Requires procedure code to be relocatable

 Avoids image enlarge caused by static linking

of all (transitively) referenced libraries

 Automatically picks up new library versions

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Chapter 2 — Instructions: Language of the Computer — 33

Starting Java Applications

Simple portable

instruction set for

the JVM

Interprets

bytecodes

Compiles

bytecodes of

“hot” methods

into native

code for host

machine

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

An Example MIPS Program
Program: (descriptive name) Programmer: NAME

Due Date: Course: CSE 2021

Functional Description: Find the sum of the integers from 1 to N where

N is a value input from the keyboard.

###

Register Usage: $t0 is used to accumulate the sum

$v0 the loop counter, counts down to zero

##

Algorithmic Description in Pseudocode:

main: v0 << value read from the keyboard (syscall 5)

if (v0 < = 0) stop

t0 = 0; # t0 is used to accumulate the sum

While (v0 > 0) { t0 = t0 + v0; v0 = v0 - 1}

Output to monitor syscall(1) << t0; goto main

##

.data

prompt: .asciiz "\n\n Please Input a value for N = “

result: .asciiz " The sum of the integers from 1 to N is “

bye: .asciiz "\n **** Have a good day **** "
.globl main

Chapter 2 — Instructions: Language of the Computer — 34

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

.text
main: li $v0, 4 # system call code for print_str

la $a0, prompt # load address of prompt into a0
syscall # print the prompt message
li $v0, 5 # system call code for read int
syscall # reads a value of N into v0
blez $v0, done # if (v0 < = 0) go to done
li $t0, 0 # clear $t0 to zero_____________

loop: add $t0, $t0, $v0 # sum of integers in register $t0

addi $v0, $v0, -1 # summing in reverse order

bnez $v0, loop # branch to loop if $v0 is != zero__

li $v0, 4 # system call code for print_str

la $a0, result # load address of message into $a0

syscall # print the string

li $v0, 1 # system call code for print_int

move $a0, $t0 # a0 = $t0

syscall # prints the value in register $a0

b main__

done: li $v0, 4 # system call code for print_str

la $a0, bye # load address of msg. into $a0

syscall # print the string

li $v0, 10 # terminate program

syscall # return control to system

An Example MIPS Program

Chapter 2 — Instructions: Language of the Computer — 35

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u

te
r H

a
rd

w
a
re

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Four Important Number Systems

System Why? Remarks

Decimal Base 10: (10 fingers) Most used system

Binary Base 2: On/Off

systems

2-4 times more digits than

decimal

Octal Base 8: Shorthand

notation for working

with binary

3 times less digits than

binary

Hex Base 16 4 times less digits than

binary

Chapter 2 — Instructions: Language of the Computer — 36

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Positional Number Systems

Have a radix r (base) associated with them.

 In the decimal system, r = 10:
 Ten symbols: 0, 1, 2, ..., 8, and 9

 More than 9 move to next position, so each position

is power of 10

 Nothing special about base 10 (used because we

have 10 fingers)

What does 642.39110 mean?

6 x 102 + 4 x 101 + 2 x 100 . 3 x 10-1 + 9 x 10-2 + 1 x 10-3

Radix pointIncreasingly +ve

powers of radix

Increasingly -ve

powers of radix

Chapter 2 — Instructions: Language of the Computer — 37

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Positional Number Systems

 What does 642.39110 mean?

Radix point

 Multiply each digit by appropriate power of 10

and add them together

 In general: i
-m

i=n-1

∑a i ×r

Base 10 102 101 100
10-1 10-2 10-3

(r) (100) (10) (1) (0.1) (0.01) (0.001)

Coefficient

(aj)

6 4 2 3 9 1

Product: aj*ri 600 40 2 0.3 0.09 0.001

Value = 600 + 40 + 2 + 0.3 + 0.09 + 0.001 = 642.391

Chapter 2 — Instructions: Language of the Computer — 38

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Positional Number Systems

Number

system

Radix Symbols

Binary 2 {0,1}

Octal 8 {0,1,2,3,4,5,6,7}

Decimal 10 {0,1,2,3,4,5,6,7,8,9}

Hexadecimal 16 {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f}

Chapter 2 — Instructions: Language of the Computer — 39

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Binary Number System

Decimal Binary Decimal Binary

0 0000 8 1000

1 0001 9 1001

2 0010 10 1010

3 0011 11 1011

4 0100 12 1100

5 0101 13 1101

6 0110 14 1110

7 0111 15 1111

Chapter 2 — Instructions: Language of the Computer — 40

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Octal Number System

Decimal Octal Decimal Octal

0 0 8 10

1 1 9 11

2 2 10 12

3 3 11 13

4 4 12 14

5 5 13 15

6 6 14 16

7 7 15 17

Chapter 2 — Instructions: Language of the Computer — 41

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Hexadecimal Number System

Decimal Hex Decimal Hex

0 0 8 8

1 1 9 9

2 2 10 A

3 3 11 B

4 4 12 C

5 5 13 D

6 6 14 E

7 7 15 F

Chapter 2 — Instructions: Language of the Computer — 42

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Four Number Systems

Decimal Binary Octal Hex Decimal Binary Octal Hex

0 0000 0 0 8 1000 10 8

1 0001 1 1 9 1001 11 9

2 0010 2 2 10 1010 12 A

3 0011 3 3 11 1011 13 B

4 0100 4 4 12 1100 14 C

5 0101 5 5 13 1101 15 D

6 0110 6 6 14 1110 16 E

7 0111 7 7 15 1111 17 F

Chapter 2 — Instructions: Language of the Computer — 43

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Conversion: Binary to Decimal

1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 . 0 x 2-1 + 1 x 2-2 + 1 x 2-3 = 13.37510

Binary point

Binary

1101.0112

Decimal

(??)10

r j 23(8) 22(4) 21(2) 20(1) 2-1(0.5) 2-2(0.25) 2-3(0.125)

aj 1 1 0 1 0 1 1

aj*r
j 8 4 0 1 0 0.25 0.125

(1101.011)2= 8 + 4 + 1 + 0.25 + 0.125 = 13.375

Chapter 2 — Instructions: Language of the Computer — 44

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Conversion: Decimal to Binary

15510 = 100110112

 A decimal number can be converted to binary by

repeated division by 2 if it is an integer

Arrange

remainders

in reverse

order

number ÷2 Remainder

155 77 1 Least Significant

Bit (LSB)

77 38 1

38 19 0

19 9 1

9 4 1

4 2 0

2 1 0

1 0 1 Most Significant

Bit (MSB)

Chapter 2 — Instructions: Language of the Computer — 45

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Conversion: Decimal to Binary

Decimal Binary

(??)2(27.375)10

number ÷2 Remainder

27 13 1

13 6 1

6 3 0

3 1 1

1 0 1

Arrange remainders in reverse

order: 11011

⇒ 27.37510=11011.0112

1.0 1

Arrange in order: 011

number x2 Integer

0.375 0.75 0

0.75 1.50 1

0.50

• If the number includes a radix point, it is necessary to

separate the number into an integer part and a fraction

part, each part must be converted separately.

Chapter 2 — Instructions: Language of the Computer — 46

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Conversion: Octal to Binary

Octal

345.56028

Binary

(???)2

345. 56 0 2
011 100 101 101 110 000 010

345.56028=11100101.101110000012

Chapter 2 — Instructions: Language of the Computer — 47

Discard trailing zero(s)Discard leading zero(s)

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Conversion: Binary to Octal

Binary

11001110.01011012

Octal

(??)8

Group by 3’s

Add trailing zeros if necessary

011 001110

3 1 6

Group by 3’s

Add leading zeros if necessary

. 010110100

11001110.01011012 = 316.2648

Add trailing zero(s)

6 42

Chapter 2 — Instructions: Language of the Computer — 48

Add leading zero(s)

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Conversion: Binary to Hex

Binary Hex

11100101101.11110101112 (??)16

Add trailing zero(s)

= 72D.F5C16

Group by 4’s
Add trailing zeros if

necessary

Group by 4’s

Add leading zeros if

necessary

011100101101

7 2 D

. 111101011100
CF 5

Chapter 2 — Instructions: Language of the Computer — 49

Add leading zero(s)

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Conversion: Hex to Binary

Hex

B9A4.E6C16

Binary

(??)2

1011100110100100.11100110112

1011100110100100
B 9 A 4

. 111001101100
E 6 C

Chapter 2 — Instructions: Language of the Computer — 50

Discard trailing zero(s)

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Conversion: Hex to Decimal

Hex

B63.4C16

Decimal

(??)10

10
11×162 +6×161 +3×160 . 4×16−1 +12×16−2 =(2915.296875)

162 161 160
16-1 16-2

B (=11) 6 3 4 C (=12)

= 2816 + 96 + 3 + 0.25 + 0.046875 = 2915.296875

Chapter 2 — Instructions: Language of the Computer — 51

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

 Convert the hexadecimal number A59.FCE to binary

 Convert the decimal number 166.34 into binary

(A59.FCE)16 = (10100110.0101…)2

Chapter 2 — Instructions: Language of the Computer — 52

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Conversion: Activity 1

Binary Numbers

 Number of permutations double with every extra bit

 2n unique numbers can be represented by n bits

 How many distinct numbers can be represented by n bits?

No. of

bits

Distinct nos.

1 2 {0,1}

2 4 {00, 01, 10, 11}

3 8 {000, 001, 010, 011, 100, 101, 110, 111}

… …

n 2n

Chapter 2 — Instructions: Language of the Computer — 53

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Number System and Computers

 Some tips

 Binary numbers often grouped in fours for
easy reading

 1 byte=8-bit, 1 word = 4-byte (32 bits)

 Decimal is assumed in computer
programs (e.g. Verilog, C) by default

 To represent other number bases, use

System Representation Example for

20

Hexadecimal 0x... 0x14

Binary 0b... 0b10100

Octal 0o… (zero and‘O’) 0o24

Chapter 2 — Instructions: Language of the Computer — 54

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

 Addresses often written in Hex

 Most compact representation

 Easy to understand given their hardware

structure

 For a range 0x000 – 0xFFF, we can

immediately see that 12 bits are needed,

4K locations

 Tip: 10 bits = 1K

Number System and Computers

Chapter 2 — Instructions: Language of the Computer — 55

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Negative Number Representation

 Three kinds of representations are

common:

1. Signed Magnitude (SM)

2. One’s Complement

3. Two’s Complement

Chapter 2 — Instructions: Language of the Computer — 56

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Signed Magnitude Representation

[0,1] {………………………….}

Sign bit (n -1)
(left most) magnitude bits

 0 indicates +ve

 1 indicates -ve

8 bit representation for +13 is 0 0001101

8 bit representation for -13 is 1 0001101

Chapter 2 — Instructions: Language of the Computer — 57

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Let N be an n-bit number and Ñ(1) be the

1’s Complement of the number. Then,

Ñ(1) = 2n - 1 - |N|

 The idea is to leave positive numbers as is, but to

represent negative numbers by the 1’s Complement
of their magnitude.

 Example: Let n = 4. What is the 1’s
Complement representation for +6 and -6?

 +6 is represented as 0110 (as usual in binary)

 -6 is represented by 1’s complement of its magnitude (6)

1’s Complement Notation

Chapter 2 — Instructions: Language of the Computer — 58

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

1’s Complement Notation

 1’s C representation can be computed in 2 ways:

 Method 1: 1’s C representation of -6 is:

24 - 1 - |N| = (16 – 1 – 6)10 = (9)10 =

(1001)2

 Method 2: For -6, the magnitude = 6

= (0110)2

 The 1’s C representation is obtained by

complementing the bits of the

magnitude: (1001)2

Chapter 2 — Instructions: Language of the Computer — 59

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

2’s Complement Notation

Let N be an n bit number and Ñ(2) be the

2’s Complement of the number. Then,

Ñ(2) = 2n - |N|

 Again, the idea is to leave positive numbers as is, but
to represent negative numbers by the 2’s C of their
magnitude.

 Example: Let n = 5. What is 2’s C representation

for +11 and -13?

 +11 is represented as 01011 (as usual in binary)

 -13 is represented by 2’s complement of its

magnitude (13)

Chapter 2 — Instructions: Language of the Computer — 60

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

2’s Complement Notation

 2’s C representation can be computed in 2 ways:

Method 1: 2’s C representation of -13 is

25 - |N| = (32 – 13)10 = (19)10 = (10011)2

Method 2: For -13, the magnitude is

13 = (01101)2

 The 2’s C representation is obtained by adding 1 to the

1’s C of the magnitude

 25 - |N| = (25 – 1 – |N|) + 1 = 1’s C + 1

01101 10010 10011
1’s C add 1

Chapter 2 — Instructions: Language of the Computer — 61

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Comparing All Signed Notations

 In all 3 representations, a

–ve number has a 1 in MSB
location

 To handle –ve numbers using

n bits,

 = 2n-1 symbols can be used
for positive numbers

 = 2n-1 symbols can be used
for negative umbers

 In 2’s C notation, only 1
combination used for 0

4-bit No. SM 1’s C 2’s C

0000 +0 +0 0

0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 -0 -7 -8

1001 -1 -6 -7

1010 -2 -5 -6

1011 -3 -4 -5

1100 -4 -3 -4

1101 -5 -2 -3

1110 -6 -1 -2

1111 -7 -0 -1

Chapter 2 — Instructions: Language of the Computer — 62

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Chapter 2 — Instructions: Language of the Computer — 63

Unsigned Binary Integers

 Given an n-bit number

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits

 0 to +4,294,967,295

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Chapter 2 — Instructions: Language of the Computer — 64

2’s-Complement Signed Integers

 Given an n-bit number

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx

 Range: –2n – 1 to +2n – 1 – 1

 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits

 –2,147,483,648 to +2,147,483,647

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Chapter 2 — Instructions: Language of the Computer — 65

2’s-Complement Signed Integers

 Bit 31 is sign bit

 1 for negative numbers

 0 for non-negative numbers

 Non-negative numbers have the same unsigned
and 2’s-complement representation

 Some specific numbers

 0: 0000 0000 … 0000

 –1: 1111 1111 … 1111

 Most-negative: 1000 0000 … 0000

 Most-positive: 0111 1111 … 1111

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Chapter 2 — Instructions: Language of the Computer — 66

Signed Negation

 Complement and add 1

 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2

 Example: negate +2

 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1

= 1111 1111 … 11102

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Chapter 2 — Instructions: Language of the Computer — 67

Sign Extension

 Representing a number using more bits
 preserve the numeric value

 In MIPS instruction set
 addi: extend immediate value

 lb, lh: extend loaded byte/halfword

 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010

 –2: 1111 1110 => 1111 1111 1111 1110

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e

rs

Chapter 2 — Instructions: Language of the Computer — 68

Representing Instructions

 Instructions are encoded in binary

 Called machine code

 MIPS instructions

 Encoded as 32-bit instruction words

 Small number of formats encoding operation code

(opcode), register numbers, …

 Regularity!

 Register numbers

 $t0 – $t7 are reg’s 8 – 15

 $t8 – $t9 are reg’s 24 – 25

 $s0 – $s7 are reg’s 16 – 23

§
2
.5

 R
e
p
re

s
e

n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 69

MIPS R-format Instructions

 Instruction fields

 op: operation code (opcode)

 rs: first source register number

 rt: second source register number

 rd: destination register number

 shamt: shift amount (00000 for now)

 funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

§
2
.5

 R
e
p
re

s
e

n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 70

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

§
2
.5

 R
e
p
re

s
e

n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 71

Hexadecimal

 Base 16

 Compact representation of bit strings

 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

 Example: eca8 6420

 1110 1100 1010 1000 0110 0100 0010 0000

§
2
.5

 R
e
p
re

s
e

n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 72

MIPS I-format Instructions

 Immediate arithmetic and load/store instructions
 rt: destination or source register number

 Constant: –215 to +215 – 1

 Address: offset added to base address in rs

 Design Principle 4: Good design demands good
compromises
 Different formats complicate decoding, but allow 32-bit

instructions uniformly

 Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

§
2
.5

 R
e
p
re

s
e

n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 73

MIPS I-format Example

lw $t0, 32($s3) # Temporary reg $t0 gets A[8]

35 19 8 32

6 bits 5 bits 5 bits 16 bits

lw $s3 $t0 address

6 bits 5 bits 5 bits 16 bits

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

100011 10011 01000 0000000000100000

6 bits 5 bits 5 bits 16 bits

§
2
.5

 R
e
p
re

s
e

n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 74

Stored Program Computers

 Instructions represented in
binary, just like data

 Instructions and data stored
in memory

 Programs can operate on
programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work
on different computers
 Standardized ISAs

The BIG Picture

§
2
.5

 R
e
p
re

s
e

n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 75

Logical Operations

 Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting

groups of bits in a word

§
2
.6

 L
o
g
ic

a
l O

p
e
ra

tio
n
s

Chapter 2 — Instructions: Language of the Computer — 76

Shift Operations

 shamt: how many positions to shift

 Shift left logical

 Shift left and fill with 0 bits

 sll by i bits multiplies by 2i

 Shift right logical

 Shift right and fill with 0 bits

 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

§
2
.6

 L
o
g
ic

a
l O

p
e
ra

tio
n
s

Chapter 2 — Instructions: Language of the Computer — 77

AND Operations

 Useful to mask bits in a word

 Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

§
2
.6

 L
o
g
ic

a
l O

p
e
ra

tio
n
s

Chapter 2 — Instructions: Language of the Computer — 78

OR Operations

 Useful to include bits in a word

 Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

§
2
.6

 L
o
g
ic

a
l O

p
e
ra

tio
n
s

Chapter 2 — Instructions: Language of the Computer — 79

NOT Operations

 Useful to invert bits in a word

 Change 0 to 1, and 1 to 0

 MIPS has NOR 3-operand instruction

 a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always

read as zero

§
2
.6

 L
o
g
ic

a
l O

p
e
ra

tio
n
s

Chapter 2 — Instructions: Language of the Computer — 80

Conditional Operations

 Branch to a labeled instruction if a
condition is true

 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1
 unconditional jump to instruction labeled L1

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

Chapter 2 — Instructions: Language of the Computer — 81

Compiling If Statements

 C code:

if (i==j) f = g+h;
else f = g-h;

 f, g,h in $s0, $s1, $s2

 Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

Chapter 2 — Instructions: Language of the Computer — 82

Compiling Loop Statements

 C code:

while (save[i] == k) i += 1;

 i in $s3, k in $s5, address of save in $s6

 Compiled MIPS code:

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

Chapter 2 — Instructions: Language of the Computer — 83

Basic Blocks

 A basic block is a sequence of instructions

with

 No embedded branches (except at end)

 No branch targets (except at beginning)

 A compiler identifies basic

blocks for optimization

 An advanced processor

can accelerate execution

of basic blocks

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

Chapter 2 — Instructions: Language of the Computer — 84

More Conditional Operations

 Set result to 1 if a condition is true

 Otherwise, set to 0

 slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

Chapter 2 — Instructions: Language of the Computer — 85

Branch Instruction Design

 Why not blt, bge, etc?

 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work

per instruction, requiring a slower clock

 All instructions penalized!

 beq and bne are the common case

 This is a good design compromise

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

Chapter 2 — Instructions: Language of the Computer — 86

Signed vs. Unsigned

 Signed comparison: slt, slti

 Unsigned comparison: sltu, sltui

 Example

 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt $t0, $s0, $s1 # signed

 –1 < +1 $t0 = 1 (Set)

 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 < +1 $t0 = 0 (Reset)

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

Procedure Calling

 Procedure (function) performs a specific
task and returns results to caller.

Chapter 2 — Instructions: Language of the Computer — 87

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Procedure Calling

 Calling program

 Place parameters in registers $a0 - $a3

 Transfer control to procedure

 Called procedure

 Acquire storage for procedure, save values of
required register(s) on stack $sp

 Perform procedure’s operations, restore the
values of registers that it used

 Place result in register for caller $v0 - $v1

 Return to place of call by returning to
instruction whose address is saved in $ra

Chapter 2 — Instructions: Language of the Computer — 88

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 89

Register Usage

 $a0 – $a3: arguments (reg’s 4 – 7)

 $v0, $v1: result values (reg’s 2 and 3)

 $t0 – $t9: temporaries
 Can be overwritten by callee

 $s0 – $s7: saved
 Must be saved/restored by callee

 $gp: global pointer for static data (reg 28)

 $sp: stack pointer for dynamic data (reg 29)

 $fp: frame pointer (reg 30)

 $ra: return address (reg 31)

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 90

Procedure Call Instructions

 Procedure call: jump and link

jal ProcedureLabel

 Address of following instruction put in $ra

 Jumps to target address

 Procedure return: jump register

jr $ra

 Copies $ra to program counter

 Can also be used for computed jumps

 e.g., for case/switch statements

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 91

Leaf Procedure Example

 C code:

int leaf_example (int g, h, i, j)
{ int f;
f = (g + h) - (i + j);
return f;

}

 Arguments g, …, j in $a0, …, $a3

 f in $s0 (hence, need to save $s0 on stack)

 Result in $v0

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 92

Leaf Procedure Example (2)

 MIPS code:
leaf_example:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

 MIPS code for calling function:

main:

…

jal leaf_example

…

Chapter 2 — Instructions: Language of the Computer — 93

Leaf Procedure Example (3)
§

2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 94

Non-Leaf Procedures

 Procedures that call other procedures

 For nested call, caller needs to save on

the stack:

 Its return address

 Any arguments and temporaries needed after

the call

 Restore from the stack after the call

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 95

Non-Leaf Procedure Example

 C code:

int fact (int n)
{
if (n < 1) return 1;
else return n * fact(n - 1);

}

 Argument n in $a0

 Result in $v0

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 96

 MIPS code:
fact:

addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # save argument
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $v0 # multiply to get result
jr $ra # and return

Non-Leaf Procedure Example
§

2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 97

Non-Leaf Procedure Example
§

2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 98

Non-Leaf Procedure Example
§

2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 99

Non-Leaf Procedure Example
§

2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 100

Non-Leaf Procedure Example
§

2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 101

Non-Leaf Procedure Example

6

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 102

Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 103

Memory Layout

 Text: program code

 Static data: global
variables
 e.g., static variables in C,

constant arrays and strings

 $gp initialized to address
allowing ±offsets into this
segment

 Dynamic data: heap
 E.g., malloc in C, new in

Java

 Stack: automatic storage

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Register Summary

 The following registers are preserved on call

 $s0 - $s7, $gp, $sp, $fp, and $ra

Chapter 2 — Instructions: Language of the Computer — 104

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 105

Character Data

 Byte-encoded character sets

 ASCII: (7-bit) 128 characters

 95 graphic, 33 control

 Latin-1: (8-bit) 256 characters

 ASCII, +96 more graphic characters

 Unicode: 32-bit character set

 Used in Java, C++ wide characters, …

 Most of the world’s alphabets, plus symbols

 UTF-8, UTF-16: variable-length encodings

§
2
.9

 C
o
m

m
u
n
ic

a
tin

g
 w

ith
 P

e
o
p
le

ASCII Representation of Characters

Chapter 2 — Instructions: Language of the Computer — 106

§
2
.9

 C
o
m

m
u
n
ic

a
tin

g
 w

ith
 P

e
o
p
le

ASCII Characters

 American Standard Code for Information

Interchange (ASCII).

 Most computers use 8-bit to represent each

character. (Java uses Unicode, which is 16-

bit).

 Signs are combination of characters.

 How to load a byte?

 lb, lbu, sb for byte (ASCII)

 lh, lhu, sh for half-word instruction
(Unicode)

Chapter 2 — Instructions: Language of the Computer — 107

§
2
.9

 C
o
m

m
u
n
ic

a
tin

g
 w

ith
 P

e
o
p
le

Chapter 2 — Instructions: Language of the Computer — 108

Byte/Halfword Operations

 Could use bitwise operations

 MIPS byte/halfword load/store

 String processing is a common case

lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt

lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt

sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

§
2
.9

 C
o
m

m
u
n
ic

a
tin

g
 w

ith
 P

e
o
p
le

Chapter 2 — Instructions: Language of the Computer — 109

String Copy Example

 C code:

 Null-terminated string

void strcpy (char x[], char y[])
{ int i;
i = 0;
while ((x[i]=y[i])!='\0')
i += 1;

}

 Addresses of x, y in $a0, $a1

 i in $s0

§
2
.9

 C
o
m

m
u
n
ic

a
tin

g
 w

ith
 P

e
o
p
le

Chapter 2 — Instructions: Language of the Computer — 110

String Copy Example

 MIPS code:
strcpy:

addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i = 0

L1: add $t1, $s0, $a1 # addr of y[i] in $t1
lbu $t2, 0($t1) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] == 0
addi $s0, $s0, 1 # i = i + 1
j L1 # next iteration of loop

L2: lw $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
jr $ra # and return

§
2
.9

 C
o
m

m
u
n
ic

a
tin

g
 w

ith
 P

e
o
p
le

Chapter 2 — Instructions: Language of the Computer — 111

0000 0000 0011 1101 0000 0000 0000 0000

32-bit Constants

 Most constants are small

 16-bit immediate is sufficient

 For the occasional 32-bit constant

lui rt, constant

 Copies 16-bit constant to left 16 bits of rt

 Clears right 16 bits of rt to 0

lui $s0,61

0000 0000 0011 1101 0000 1001 0000 0000ori $s0,$s0,2304

§
2
.1

0
 M

IP
S

 A
d
d
re

s
s
in

g
 fo

r 3
2

-B
it Im

m
e
d
ia

te
s
 a

n
d
 A

d
d
re

s
s
e
s

Chapter 2 — Instructions: Language of the Computer — 112

Branch Addressing

 Branch instructions specify

 Opcode, two registers, target address

 Most branch targets are near branch

 Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

 PC-relative addressing

 Target address = PC + offset × 4

 PC already incremented by 4 by this time

§
2
.1

0
 M

IP
S

 A
d
d
re

s
s
in

g
 fo

r 3
2

-B
it Im

m
e
d
ia

te
s
 a

n
d
 A

d
d
re

s
s
e
s

Chapter 2 — Instructions: Language of the Computer — 113

Jump Addressing

 Jump (j and jal) targets could be

anywhere in text segment

 Encode full address in instruction

op address

6 bits 26 bits

 PseudoDirect jump addressing

 Target address = PC31…28 : (address × 4)
32 bits = 4 bits 28 bits

§
2
.1

0
 M

IP
S

 A
d
d
re

s
s
in

g
 fo

r 3
2

-B
it Im

m
e
d
ia

te
s
 a

n
d
 A

d
d
re

s
s
e
s

Chapter 2 — Instructions: Language of the Computer — 114

Target Addressing Example

 Loop code from earlier example

 Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 2 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024

§
2
.1

0
 M

IP
S

 A
d
d
re

s
s
in

g
 fo

r 3
2

-B
it Im

m
e
d
ia

te
s
 a

n
d
 A

d
d
re

s
s
e
s

Chapter 2 — Instructions: Language of the Computer — 115

Branching Far Away

 If branch target is too far to encode with

16-bit offset, assembler rewrites the code

 Example

beq $s0,$s1, L1

written as

bne $s0,$s1, L2
j L1

L2: …

§
2
.1

0
 M

IP
S

 A
d
d
re

s
s
in

g
 fo

r 3
2

-B
it Im

m
e
d
ia

te
s
 a

n
d
 A

d
d
re

s
s
e
s

Chapter 2 — Instructions: Language of the Computer — 116

Addressing Mode Summary
§

2
.1

0
 M

IP
S

 A
d
d
re

s
s
in

g
 fo

r 3
2

-B
it Im

m
e
d
ia

te
s
 a

n
d
 A

d
d
re

s
s
e
s

Chapter 2 — Instructions: Language of the Computer — 117

Synchronization (Parallelism)

 Two processors sharing an area of memory

 P1 writes, then P2 reads

 Data race if P1 and P2 don’t synchronize

 Result depends on order of accesses

 Hardware support required

 Atomic read/write memory operation

 No other access to the location allowed between the

read and write

 Could be a single instruction

 E.g., atomic swap of register ↔ memory

 Or an atomic pair of instructions

§
2
.1

1
 P

a
ra

lle
lis

m
 a

n
d
 In

s
tru

c
tio

n
s
: S

y
n
c
h
ro

n
iz

a
tio

n

Chapter 2 — Instructions: Language of the Computer — 118

Synchronization in MIPS

 Load linked: ll rt, offset(rs)

 Store conditional: sc rt, offset(rs)
 Succeeds if location not changed since the ll

 Returns 1 in rt

 Fails if location is changed
 Returns 0 in rt

 Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value

ll $t1,0($s1) ;load linked

sc $t0,0($s1) ;store conditional

beq $t0,$zero,try ;branch store fails

add $s4,$zero,$t1 ;put load value in $s4

§
2
.1

1
 P

a
ra

lle
lis

m
 a

n
d
 In

s
tru

c
tio

n
s
: S

y
n
c
h
ro

n
iz

a
tio

n

Chapter 2 — Instructions: Language of the Computer — 119

C Sort Example

 Illustrates use of assembly instructions
for a C bubble sort function

 Swap procedure (leaf)
void swap(int v[], int k)
{
int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

 v in $a0, k in $a1, temp in $t0

§
2
.1

3
 A

 C
 S

o
rt E

x
a
m

p
le

 to
 P

u
t It A

ll T
o
g
e
th

e
r

Chapter 2 — Instructions: Language of the Computer — 120

The Procedure Swap

swap: sll $t1, $a1, 2 # $t1 = k * 4

add $t1, $a0, $t1 # $t1 = v+(k*4)

(address of v[k])

lw $t0, 0($t1) # $t0 (temp) = v[k]

lw $t2, 4($t1) # $t2 = v[k+1]

sw $t2, 0($t1) # v[k] = $t2 (v[k+1])

sw $t0, 4($t1) # v[k+1] = $t0 (temp)

jr $ra # return to calling routine

§
2
.1

3
 A

 C
 S

o
rt E

x
a
m

p
le

 to
 P

u
t It A

ll T
o
g
e
th

e
r

Chapter 2 — Instructions: Language of the Computer — 121

Example
.data

STR: .asciiz "a1b2c3d4e5f6g7h8i9" # STR[0,1,..,17] = a,1,b,..,0 (8 bits)

MAX: .word 0x44556677; # MAX = 0x44556677 (32 bits)

SIZE: .byte 33,22,11; # SIZE[0,1,2] = 33,22,11 (8 bits)

count: .word 0,1,2; # count[0,1,2] = 0,1,2 (32 bits)

#---

.text

main:

la $t0, STR # $t0 = address of STR[0]

lb $t1, 0($t0) # $t1 = 97 (ascii code for 'a' in decimal)

addi $t2, $t1, -4 # $t2 = 93

lb $t3, 3($t0) # $t3 = 50 (ascii code for '2' in decimal)

lb $t4, 23($t0) # $t4 = 68 = 44 hex (word alignment)

lb $t5, 24($t0) # $t5 = 33

lb $t6, 32($t0) # $t6 = 1 (word=0001)

lb $t7, 33($t0) # $t7 = 0 (word=0001)

lh $t8, 26($t0) # $t8 = 11 = b hex

lw $t9, 36($t0) # $t9 = 2

#---

jr $ra # return

§
2
.1

3
 A

 C
 S

o
rt E

x
a
m

p
le

 to
 P

u
t It A

ll T
o
g
e
th

e
r

Chapter 2 — Instructions: Language of the Computer — 122

Concluding Remarks

 Design principles

1. Simplicity favors regularity

2. Smaller is faster

3. Make the common case fast

4. Good design demands good compromises

 Layers of software/hardware

 Compiler, assembler, hardware

 MIPS: typical of RISC ISAs

 c.f. x86

§
2
.2

0
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

The slides are adopted from Computer

Organization and Design, 5th Edition

by David A. Patterson and John L. Hennessy

2014, published by MK (Elsevier)

Acknowledgement

Chapter 2 — Instructions: Language of the Computer — 123

