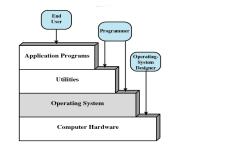

EECS 3221 Operating System Fundamentals

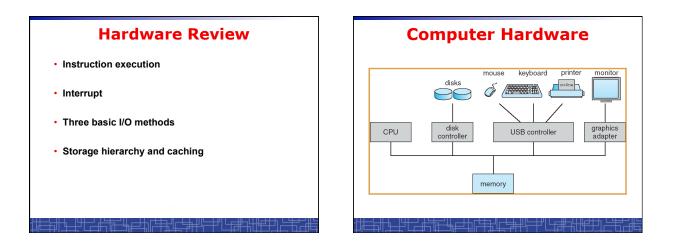
Instructor: Prof. Hui Jiang Email: <u>hj@cse.yorku.ca</u> Web: http://www.eecs.yorku.ca/course/3221

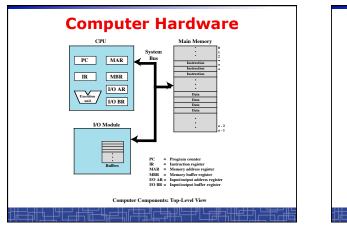
- Use C language

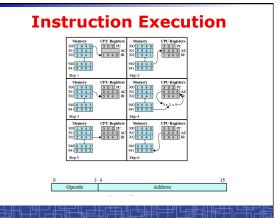
Bibliography

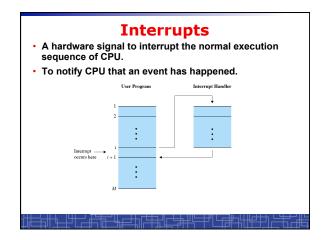
- · Required textbook
 - "Operating System Concepts: 9th edition"
- Other reference books (optional):
 - "Advanced Programming in the Unix Environment" (for Unix programming, Unix API)
 - "Programming with POSIX threads" (Multithread programming in Unix, Pthread)
 - "Linux Kernel Development (2nd edition)" (understanding Linux kernel in details)

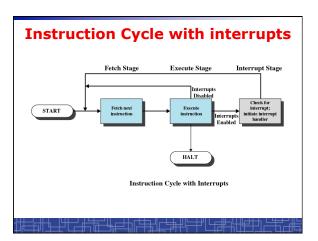

Why this course?

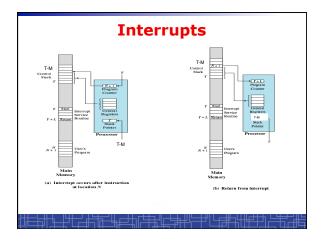

- · OS is an essential part of any computer system
- To know
 - what's going on behind computer screens
 - how to design a complex software system
- Commercial OS:
 - Unix, BSD, Solaris, Linux, Mac OS, Android, Chrome OS
 - Microsoft DOS, Windows 95/98,NT,2000,XP,Vista, Win7, Win8

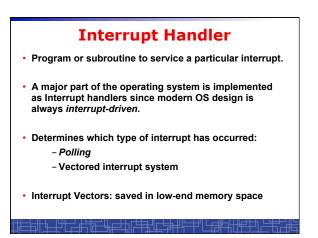

What is Operating System?

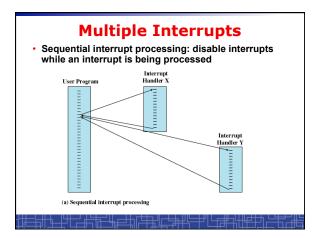

- A program that acts as an intermediary between computer hardware and computer users (or user applications).
- · OS manages computer hardware:
 - Use the computer hardware efficiently.
 - Make the computer hardware convenient to use.
 - Control resource allocation.
 - Protect resource from unauthorized access.

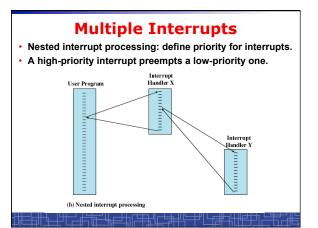

Computer Structure

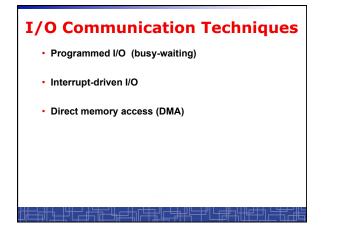


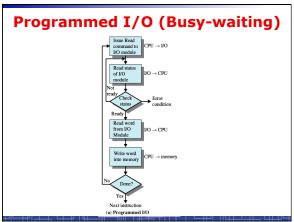


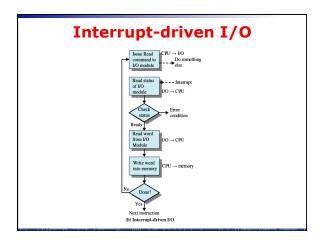


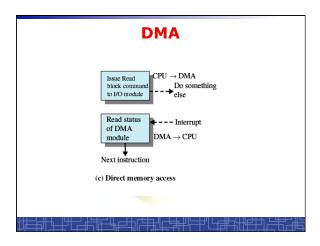


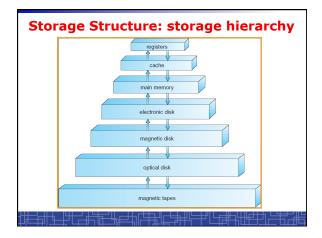


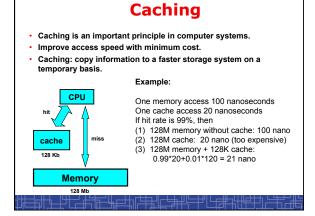




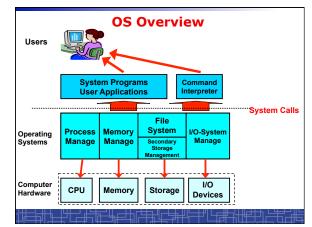








Storage Hierarchy


Level	1	2	3	4
Name	registers	cache	main memory	disk storage
Typical size	< 1 KB	> 16 MB	> 16 GB	> 100 GB
Implementation technology	custom memory with multiple ports, CMOS	on-chip or off-chip CMOS SRAM	CMOS DRAM	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 – 25	80 – 250	5,000.000
Bandwidth (MB/sec)	20,000 - 100,000	5000 - 10,000	1000 - 5000	20 - 150
Managed by	compiler	hardware	operating system	operating system
Backed by	cache	main memory	disk	CD or tape

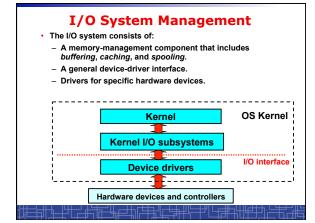
Volatile vs. Persistent

Caching Why high hit rate? Memory access is highly correlated Locality of reference Cache Design: Cache size Replacement algorithm: Least-Recently-Used (LRU) algorithm Write policy: write memory when updated or replaced. Normally implemented by hardware.

Process Management

- · A process is a program in execution.
- A process needs certain resources, including CPU time, memory, files, and I/O devices, to accomplish its task.
- The operating system is responsible for the following activities in connection with process management.
 - Process creation and deletion.
 - Process suspension and resumption.
 - Provision of mechanisms for:
 - Process synchronization
 - · Inter-process communication
 - Handling dead-lock among processes
 - ╫╌┙╫╧╬╤┙╢┎╾╛┧╓╧╪┱╢┍┶╪┱╜╚╾╤┵╢┕┍╤╫╾╲┼╢╔╧╪┑┝

Main-Memory Management


- Memory is a large array of words or bytes, each with its own address. It is a repository of quickly accessible data shared by the CPU and I/O devices.
- Main memory is a volatile storage device. It loses its contents in the case of system failure.
- For a program to be executed, it must be mapped to absolute addresses and loaded into memory.
- We keep several programs in memory to improve CPU utilization
 The operating system is responsible for the following activities
- in connections with memory management:
- Keep track of memory usage.
- Manage memory space of all processes.
- Allocate and de-allocate memory space as needed.

Secondary-Storage Management

- Since main memory (*primary storage*) is volatile and too small to accommodate all data and programs permanently, the computer system must provide *secondary storage* to back up main memory.
- Most modern computer systems use hard disks as the principal on-line storage medium, for both programs and data.
- The operating system is responsible for the following activities in connection with disk management:
- Free space management
- Storage allocation
- Disk scheduling

File Management

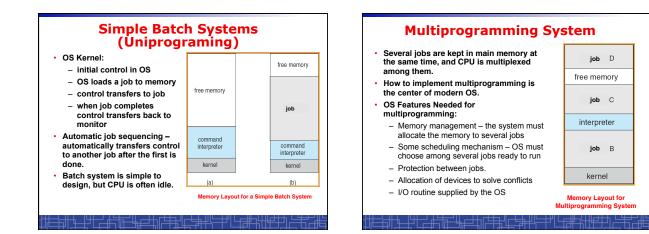
- File system: a uniform logical view of information storage
- A File:
 - logical storage unit
 - a collection of related information defined by its creator.
 Commonly, files represent programs (both source and object forms) and data.
- · Files are organized into directories to ease their use.
- The operating system is responsible for the following activities in connections with file management:
 - File Name-space management
 - File creation and deletion.
 - Directory creation and deletion.
 - Support of primitives for manipulating files and directories.
 - Mapping files onto secondary storage.
- File backup on stable (nonvolatile) storage media.

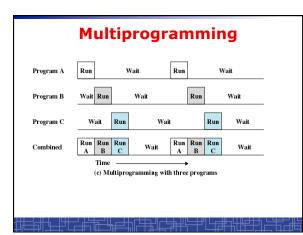
Content in OS Course

- Managing CPU usage
- Process and thread concepts
- Multi-process programming and multithread programming
- CPU scheduling
- Process Synchronization Deadlock
- Managing memory usage Memory management and virtual memory
- Managing secondary storage
- File system and its implementation
- Mass-storage structure
- Managing I/O devices:
- I/O systems
- Protection and Security
- · Case study on Unix series (scattered in all individual topics)

Tentative schedule (subject to change)

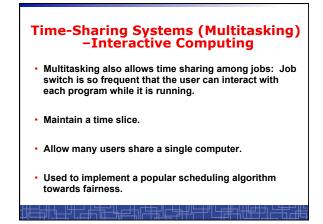
Totally 12 weeks:


- Background (2.5 week)
- Process and Thread (2 weeks)
- CPU scheduling (1 week)
- Process Synchronization (2.5 weeks)
- Memory Management (2 weeks)
- · Virtual Memory (1 week)
- Protection and Security (1 week)


Several must-know **OS concepts**

- System Booting
- Multiprogramming
- Hardware Protection - OS Kernel
- · System Calls

OS Booting


- Firmware: bootstrap program in ROM - Diagnose, test, initialize system
- · Boot block in disc
- · Entire OS loading

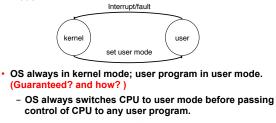
Multiprogramming: example

	JOB1	JOB2	JOB3
Гуре of job	Heavy compute	Heavy I/O	Heavy I/O
Duration	5 min	15 min	10 min
Memory required	50 M	100 M	75 M
Need disk?	No	No	Yes
Need terminal?	No	Yes	No
	No	No	Yes
Need printer?	PROSSO.	ramming	Multiprogramming
	Uniprog	10.00	Multiprogramming
Processor use	PROSSO.	10.00	
	Uniprog 20%	10.00	Multiprogramming 40%
Processor use Memory use	Uniprog 20% 33%	10.00	Multiprogramming 40% 67%
Processor use Memory use Disk use	Uniprog 20% 33% 33%	ramming	Multiprogramming 40% 67% 67%
Processor use Memory use Disk use Printer use	Uniprog 20% 33% 33% 33%	ramming	Multiprogramming 40% 67% 67% 67%

Hardware Protection

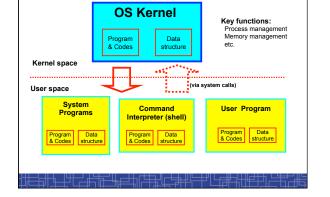
- Dual-mode Protection Strategy
 OS Kernel
- Memory protection
- CPU protection
- I/O protection

Dual-Mode CPU


- Provide hardware support to differentiate between at least two modes of CPU execution.
 - Kernel mode (also monitor mode or system mode) execution on behalf of operating system.
- 2. User mode execution on behalf of user programs.
- A mode bit in CPU to indicate current mode.

Machine instructions:

- Normal instructions: can be run in either mode
- Privileged instructions: can be run only in kernel modes
- Dual-model CPU for OS protection:
 - OS always in kernel mode; user program in user mode.


Dual-Mode CPU Operation (Cont.)

- · When booted, CPU starts from kernel mode.
- When an interrupt occurs, hardware switches to kernel mode.

Dual-Mode CPU Operation

- Carefully define which instruction should be privileged:
 - Common arithmetic operations: ADD, SHF, MUL, \ldots
 - Change from kernel to user mode
 Change from user to kernel mode (not allowed)
 - Change from user to kernel mode (not allow
 - Turn off interrupts
 - TRAP
 - Set value of timer
 - Set CPU special-purpose registers
 I/O related instructions

OS Kernel

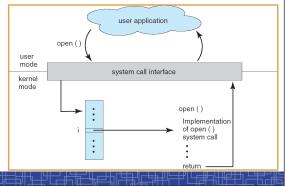
Memory Protection · Each running program has its own memory space Add two registers that determine the range of legal addresses: - base register - holds the smallest legal physical memory address. - Limit register - contains the size of the range base base + limit job 1 300040 job 2 CPU 120900 job 3 iob 4 Loading these registers are privileged instructions OS, running in kernel mode, can access all memory unrestrictedly

CPU Protection

- Timer interrupts CPU after specified period to ensure operating system maintains control.
 - Timer is decremented every clock tick.
- When timer reaches the value 0, an interrupt occurs.
- OS must set timer before turning over control to the user.
- Load-timer is a privileged instruction.
- Timer commonly used to implement time sharing.
- Timer is also used to compute the current time.

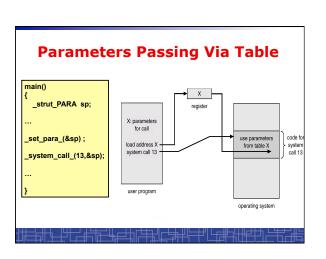
I/O Protection

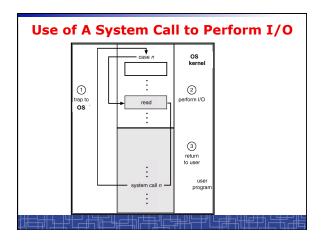
- To prevent users from performing illegal I/O, define all I/O instructions to be privileged instructions.
- User programs can not do any I/O operations directly.
- User program must require OS to do I/O on its behalf:
 - OS runs in kernel mode
 - OS first checks if the I/O is valid
 - If valid, OS does the requested operation; Otherwise, do nothing.
 - Then OS return to user program with status info.
- How a user program asks OS to do I/O
 - Through SYSTEM CALL (software interrupt)

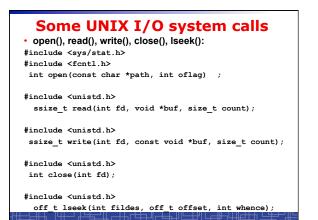

System Calls

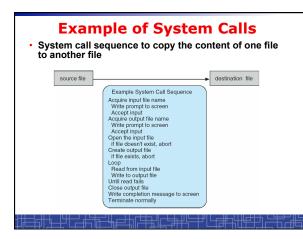
- System calls provide the interface between a running user program and the operating system.
- Process and memory control:
- Create, terminate, abort a process.
- Load, execute a program.
- Get/Set process attribute.
- Wait for time (sleep), wait event, signal event.
- Allocate and free memory.
- Debugging facilities: trace, dump, time profiling.
- File management:
- create, delete, read, write, reposition, open, close, etc.
- I/O device management: request, release, open, close, etc.
- Information maintain: time, date, etc.
- Communication and all other I/O services.

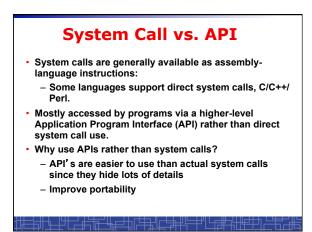
System Call Implementation (I)


- Typically, a unique number is associated with each system call:
 - System-call interface maintains a table indexed according to these numbers.
- Basically, every system call makes a software interrupt (TRAP).
- The system call interface invokes intended system call in OS kernel and returns status of the system call and any return values.






System Call Implementation (II)


- Three general methods are used to pass parameters between a running program and the operating system.
 - Pass parameters in registers.
 - Store the parameters in a table in memory, and the table address is passed as a parameter in a register.
 (This approach is taken by Linux and Solaris.)
 - Push (store) the parameters onto the stack by the program, and pop off the stack by operating system.

