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Syntax of CTL

The state formulas are defined by

du=true|a|PAD| P | Tp| Ve

The path formulas are defined by

pu=Q¢|PUP
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Semantics of CTL

The relation |~ is defined by

S | true
skEa iff ae/((s)

SE®PAV iff sEdandsEV
sE= ¢ iff not(s = @)

SkEdp iff Jme Paths(s): 7=
sV iff Vre Paths(s):m = ¢

and

TEOQ® iff 7] o
rEOUW iff 3 >0: ] vandv0o <j<i:n] o

v
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Satisfaction Set

Definition

The satisfaction set Sat(®) is defined by

Sat(®) ={secS|sE=e}.
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Model checking CTL

Basic idea
Compute Sat(®) by recursion on the structure of ¢.

TS |= ¢ iff | C Sat(e).

Alternative view
Label each state with the subformulas of ¢ that it satisfies.
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Model checking CTL

The state formulas are defined by

du=true|a|PAD| P | Tp| Ve

The path formulas are defined by

pu=Q¢|PUP
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Model checking CTL

The state formulas are defined by

du=true|a|PAD| P | Tp| Ve

The path formulas are defined by

pu=Q¢|PUP

y

The formulas are defined by

®=true [a| dAD|=d IO | I UD) | VO | V(b U )

v
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Model checking CTL

Definition

The formulas are defined by

du=true|a| ®AD | —d | IO | I Ud) | VO | ¥(d U d)

What is Sat(true)?
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Model checking CTL

Definition

The formulas are defined by

du=true|a| ®AD | —d | IO | I Ud) | VO | ¥(d U d)

What is Sat(true)?

Sat(true) = S
Alternative view
Label each state with true.
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Example

true
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Example

true

1 — {true}
2 — {true}
3 — {true}
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Model checking CTL

Definition

The formulas are defined by

du=true|a| dAD | —d | IO | I(PUP) | VO | ¥(d U d)

What is Sat(a)?
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Model checking CTL

Definition
The formulas are defined by

du=true|a| dAD | —d | IO | I(PUP) | VO | ¥(d U d)

What is Sat(a)?

Sat(a)={se S|ac((s)}

Alternative view
Label each state s satisfying a € ¢(s) with a.
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Example

green
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Example

green
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Model checking CTL

Definition

The formulas are defined by

®=true|a| ®AD|=d | IOP | I UD) | VO | V(b U )

What is Sat(® A V)?
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Model checking CTL

Definition
The formulas are defined by

®=true|a| ®AD|=d | IOP | I UD) | VO | V(b U )

What is Sat(® A V)?

Sat(® A V) = Sat(P) N Sat(V)

Alternative view

Label states, that are labelled with both ¢ and V, also with
b AV,
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Example

green A purple
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Example

green A purple

1 — {green}
2 — {green}
3 — {purple}
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Model checking CTL

Definition

The formulas are defined by

®=true |a| dAD| D |IOP | I UD) | VO | V(b U )

What is Sat(—®)? l
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Model checking CTL

Definition

The formulas are defined by

®=true |a| dAD| D |IOP | I UD) | VO | V(b U )

What is Sat(—®)? l

Sat(~®) = S\ Sat(®)

Alternative view
Label each state, that is not labelled with ¢, with —®.
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Example

—(green A purple)
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Example

—(green A purple)

1 — {green,—(green A purple)}
2 — {green,—(green A purple)}
3 — {purple,—~(green A purple)}
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Model checking CTL

Definition

The formulas are defined by

®=true [a| dAD|=d | IOP | I UD) | VO | V(b U )

What is Sat(30®)?
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Model checking CTL

Definition
The formulas are defined by

®=true [a| dAD|=d | IOP | I UD) | VO | V(b U )

What is Sat(30®)?

Answer
Sat(30OP) = { s € S| Post(s) N Sat(®) # 0 } where
Post(s) ={s' € S|s— s'}.

| A

Alternative view

Labels those states, that have a direct successor labelled with
o, also with 30O .

A,
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Example

dOgreen
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Example

dOgreen

1 — {green,dOgreen}
2 — {green,3dOgreen}
3 — {3Ogreen}
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Model checking CTL

Definition

The formulas are defined by

du=true|al ®AD | —d | IO | (S Ud) | YO | V(o U d)

What is Sat(3(¢ U w))?
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Model checking CTL

Definition
The formulas are defined by

du=true|al ®AD | —d | IO | (S Ud) | YO | V(o U d)

What is Sat(3(¢ U w))?

Proposition

Sat(3(¢ U ¥)) is the smallest subset T of S such that
(a) Sat(w)C T and

(b) if s € Sat(®) and Post(s)N'T # Bthense T.
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Model checking CTL

Definition
The formulas are defined by

du=true|al ®AD | —d | IO | (S Ud) | YO | V(o U d)

What is Sat(3(¢ U w))?

Proposition

Sat(3(¢ U ¥)) is the smallest subset T of S such that
(a) Sat(w)C T and

(b) if s € Sat(®) and Post(s)N'T # Bthense T.

Does such a smallest subset exist? \
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Crash Course on Order Theory
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Partially Ordered Set

A partially ordered set is a tuple (A, C) consisting of
@ aset Aand
@ arelation C C A x A satisfying for all a, b, and ¢ € A,
e al g,
e ifaC band bC athena= b, and
e ifaCband bC cthenalC c.
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b c
N S
a
depicts the partially ordered set

({a b, c},{(a a),(a b),(ac), (b b),(c,C)}).

EECS 4315 20/40


www.cse.yorku.ca/course/4315/

b c
N S
a
depicts the partially ordered set

({a b, c},{(a a),(a b),(ac), (b b),(c,C)}).

@ ([0, 1], <) is a partially ordered set.
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b c
N S
a
depicts the partially ordered set

({a b, c},{(a a),(a b),(ac), (b b),(c,C)}).

@ ([0, 1], <) is a partially ordered set.

@ Let S be a set (of states). Then 25 denotes the set of
subsets of S. (25, C) is a partially ordered set.
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Least Upper Bound

Let (A,C) be a partially ordered set and B C A.
@ ac Ais an upper bound of Biiff b C afor all b € B.
@ ac Ais a least upper bound of B iff

@ ais an upper bound of B, and
o forall & € A, if & is an upper bound of Bthen aLC &'.
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@ The subset {b, c} of

b c
NS
a

does not have a least upper bound.
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@ The subset {b, c} of

b c
NS
a

does not have a least upper bound.

e ([0,1],<)
The least upper bound of (0,0.5) is 0.5.
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@ The subset {b, c} of

b c
NS
a

does not have a least upper bound.
e ([0,1],<)

The least upper bound of (0,0.5) is 0.5.
@ (25 C)

For X C 25, its least upper bound is | J X.
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Least Upper Bound

Proposition

Let (A, C) be a partially ordered set and B C A. If B has a least
upper bound, then it is unique.

The least upper bound of B is denoted by LIB.
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Monotone Function

Definition
Let (A,C) be a partially ordered set. A function F: A — Ais
monotone iff for all a, b € A, if aC bthen F(a) C F(b).
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b c
NS
a

The function F : {a,b,c} — {a, b, c} defined by F(a) = a,
F(b) = aand F(c) = c is monotone.
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o
b c
N S
a

The function F : {a,b,c} — {a, b, c} defined by F(a) = a,

F(b) = aand F(c) = c is monotone.
° ([0,1],<)

The function F : [0,1] — [0, 1] defined by F(r) = 7 is

monotone.
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b c
\a/

The function F : {a,b,c} — {a, b, c} defined by F(a) = a,
F(b) = aand F(c) = c is monotone.

° ([0,1],<)
The function F : [0,1] — [0, 1] defined by F(r) = 7 is
monotone.

@ (25 Q)
Let X C S. The function F : 25 — 25 defined by
F(Y) = Y N X is monotone.
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Complete Lattice

Definition

A partially ordered set (A, C) is a complete lattice if every
subset of A has a least upper bound and a greatest lower
bound.
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@ The partially ordered set

b c

NS

a

is not a complete lattice.
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@ The partially ordered set

b c

NS

a

is not a complete lattice.
@ ([0,1], <) is a complete lattice.
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@ The partially ordered set

b c

NS

a

is not a complete lattice.
@ ([0,1], <) is a complete lattice.
@ (25 C) is a complete lattice.
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Definition
Consider the function F : A — A. Then

@ ac Ais a fixed point of F iff F(a) = a,
@ ac Ais a pre-fixed point of F iff F(a) C a, and
@ ac Ais a post-fixed point of F iff a C F(a).
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Corollary of Knaster-Tarski Fixed Point Theorem

Let (A,C) be a complete lattice. If the function F : A — A is
monotone, then it has a least fixed point (which is the least
pre-fixed point) and a greatest fixed point (which is the greatest

post-fixed point).

EECS 4315 29/40



www.cse.yorku.ca/course/4315/

Bronislaw Knaster (1893—1980)

@ Recipient of the Nagroda
panstwowa (1963)

@ Knaster’s fixed point theorem /f
the function F : 25 — 25 s
monotone then F has a least
fixed pOint. Source: Konrad Jacobs
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Alfred Tarski (1901-1983)

@ Member of the United States
National Academy of Sciences
(1965)

@ Fellow of the British Academy
(1966)

@ Member of the Royal Netherlands
Academy of Arts and Science
(1958)

@ Strongly influenced the
dissertation of Dana Scott (Turing
award Winner Of 1 976) Source: George M. Bergman

@ Tarski’s fixed point theorem /f
(A,C) is a complete lattice and
F : A — Ais a monotone function
then the set of fixed points of F is
a complete lattice.
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Least Fixed Point

Theorem

Let (A,C) be a finite complete lattice and F : A— A a
monotone function. Let

A _ W[/ ifn=0
"7 1 F(A,—1) otherwise

Then F(An) = A, forsome n € N and A, is the least fixed point
of F.

L0 is the least element of A, that is, L) C a for all a € A.
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Model Checking CTL

The formulas are defined by

du=true|a| dAD | -d | IO | I Ud) | VOD | ¥(d U d)

o’

Sat(3(¢ U ¥)) is the smallest subset T of S such that
@ Sat(V) C T and
o if s € Sat(®) and Post(s)N' T # Dthense T.
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Model Checking CTL

Definition
The formulas are defined by

du=true|a| dAD | -d | IO | I Ud) | VOD | ¥(d U d)

o’

Proposition

Sat(3(¢ U ¥)) is the smallest subset T of S such that
@ Sat(V) C T and
o if s € Sat(®) and Post(s)N' T # Dthense T.

| A\

Question

How can we use Knaster’s theorem to prove that such a set T
exists?
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Model Checking CTL

Proposition

Sat(3(¢ U ¥)) is the smallest subset T of S such that
@ Sat(V) C T and
o if s € Sat(®) and Post(s)N' T # Pthense T.
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Model Checking CTL

Proposition

Sat(3(¢ U ¥)) is the smallest subset T of S such that
@ Sat(V) C T and
o if s € Sat(®) and Post(s)N' T # Pthense T.

Definition
The function F : 25 — 25 is defined by

F(T)= Sat(V)U{s e Sat(®) | Post(s)N'T #0}.
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Model Checking CTL

Proposition

Sat(3(¢ U ¥)) is the smallest subset T of S such that
@ Sat(V) C T and
o if s € Sat(®) and Post(s)N' T # Pthense T.

Definition
The function F : 25 — 25 is defined by

F(T)= Sat(V)U{s e Sat(®) | Post(s)N'T #0}.

Proposition
The function F is monotone.
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Model Checking CTL

Proposition

Sat(3(¢ U ¥)) is the smallest subset T of S such that
@ Sat(V) C T and
o if s € Sat(®) and Post(s)N' T # Pthense T.

Definition
The function F : 25 — 25 is defined by

F(T)= Sat(V)U{s e Sat(®) | Post(s)N'T #0}.

Proposition
The function F is monotone.

Corollary

F has a least pre-fixed point, that is, there exists a smallest set
T suchthat F(T) C T.
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Model Checking CTL

Sat(P):
switch (¢):
true : returnS
a : return{scS|ac/(s)}
® AWV return Saf(®) N Sat(V)
-® : return S\ Sat(®)
JO® : return {se S| Post(s) N Sat(®) # 0}
IdUW) : T:=0
while T # F(T)
T:=F(T)
return T
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Model checking CTL

Definition
The function G : 2% — 25 is defined by

_ | Sat(V) it T=90
G(T) = { TU{se Sat(d) | Post(s)NT #£0} otherwise
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Model checking CTL

The function G : 2% — 25 is defined by

_ | Sat(V) it T=90
G(T) = { TU{se Sat(d) | Post(s)NT #£0} otherwise

For all n >0, F"(9) € F™1(0).

v
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Model checking CTL

The function G : 2% — 25 is defined by

_ | Sat(V) it T=90
G(T) = { TU{se Sat(d) | Post(s)NT #£0} otherwise

v

For all n >0, F"(9) € F™1(0).

v

Proposition
Forall n > 1, Sat(V) C F"(0).
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Model checking CTL

Definition
The function G : 2% — 25 is defined by

_ | Sat(V) it T=90
G(T) = { TU{se Sat(d) | Post(s)NT #£0} otherwise

| \

Proposition
For all n >0, F"(9) € F™1(0).

A

Proposition
Forall n > 1, Sat(V) C F"(0).

Proposition
Foralln>1, F"(0) = G"(0).

EECS 4315 36/40


www.cse.yorku.ca/course/4315/

Model Checking CTL

Sat(®):
switch (0):

IPUV) : T:=G(0)
while T # G(T)
T:=G(T)

return T
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Model Checking CTL

Sat(®):
switch (¢):
IPUW) : E:=Sat(V)
T=E
while E #
lets' c E
E:=E\{s'}

for all s € Pre(s’)
if sc Sat(®)\ T
E.=EU({s}
T:=TuU{s}
return T

where Pre(s') ={s" € S|s" — §'}.
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Example

J(green U purple)
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Example

J(green U purple)

1 — {green,3(green U purple)}
2 — {green,3(green U purple)}
3 — {purple,3(green U purple)}
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Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example
the textbook of Baier and Katoen for details), we obtain

For a transition system TS, with N states and K transitions, and
a CTL formula @, the model checking problem TS = ¢ can be
decided in time O((N + K) - |®]).
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Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example
the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system TS, with N states and K transitions, and
a CTL formula @, the model checking problem TS = ¢ can be
decided in time O((N + K) - |®]).

Theorem

| \

For a transition system TS, with N states and K transitions, and
a LTL formula ¢, the model checking problem TS |= ¢ can be
decided in time O((N + K) - 2l¢1).

A
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Time Complexity of CTL Model Checking

By improving the model checking algorithm (see, for example
the textbook of Baier and Katoen for details), we obtain

For a transition system TS, with N states and K transitions, and
a CTL formula @, the model checking problem TS = ¢ can be
decided in time O((N + K) - |®]).

v

Theorem

For a transition system TS, with N states and K transitions, and
a LTL formula ¢, the model checking problem TS |= ¢ can be
decided in time O((N + K) - 2l¢1).

v

Theorem

If P = NP then there exist LTL formulas ¢, whose size is a
polynomial in n, for which equivalent CTL formulas exist, but
not of size polynomial in n.
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