Binary Decision Diagrams EECS 4315

www.cse.yorku.ca/course/4315/

Representation States

Question

How many Boolean variables do we need to encode the states?

Representation States

Question

How many Boolean variables do we need to encode the states?

Answer

Two.

state	<i>X</i> ₁	<i>X</i> ₂
1	0	0
2	0	1
3	1	0
4	1	1

Question

Which Boolean formula represents the CTL formula purple?

state	<i>X</i> ₁	x_2
1	0	0
2	0	1
3	1	0
4	1	1

Question

Which Boolean formula represents the CTL formula purple?

Answer

[purple] =
$$\neg x_1 \lor \neg x_2$$
.

200

state	<i>X</i> ₁	<i>X</i> ₂
1	0	0
2	0	1
3	1	0
4	1	1

Question

Which Boolean formula represents the CTL formula green?

state	<i>X</i> ₁	x_2
1	0	0
2	0	1
3	1	0
4	1	1

Question

Which Boolean formula represents the CTL formula green?

Answer

[green] = $x_1 \wedge x_2$.

200

Representing Transition Relation

state	<i>X</i> ₁	<i>X</i> ₂
1	0	0
2	0	1
3	1	0
4	1	1

Question

Which Boolean formula represents the transition relation? (Represent the source by x_1 and x_2 and represent the target by x_1' and x_2' .)

Representing Transition Relation

$$egin{array}{lll} (\neg x_1 \wedge \neg x_2 \wedge \neg x_1' \wedge x_2') ee & 1
ightarrow 2 \ (\neg x_1 \wedge x_2 \wedge \neg x_1' \wedge \neg x_2') ee & 2
ightarrow 1 \ (\neg x_1 \wedge x_2 \wedge x_1' \wedge \neg x_2') ee & 2
ightarrow 3 \ (\neg x_1 \wedge x_2 \wedge x_1' \wedge x_2') ee & 2
ightarrow 4 \ (x_1 \wedge \neg x_2 \wedge x_1' \wedge \neg x_2') ee & 3
ightarrow 3 \ (x_1 \wedge x_2 \wedge x_1' \wedge x_2') & 4
ightarrow 4$$

which is equivalent to

$$(\neg x_1 \wedge \neg x_2 \wedge \neg x'_1 \wedge x'_2) \vee (\neg x_1 \wedge x_2 \wedge \neg x'_2) \vee (x_2 \wedge x'_1 \wedge x'_2) \vee (x_1 \wedge \neg x_2 \wedge x'_1 \wedge \neg x'_2)$$

which is denoted by $[\rightarrow]$.

Representing Initial States

state	<i>X</i> ₁	<i>X</i> ₂
1	0	0
2	0	1
3	1	0
4	1	1

Question

Which Boolean formula represents the set of initial states?

Representing Initial States

state	<i>X</i> ₁	<i>X</i> ₂
1	0	0
2	0	1
3	1	0
4	1	1

Question

Which Boolean formula represents the set of initial states?

Answer

$$[I] = \neg x_1 \wedge \neg x_2.$$

200

Review: Computing $Sat(\exists (\Phi \cup \Psi))$

The function $F: 2^S \to 2^S$ is defined by

$$F(T) = Sat(\Psi) \cup \{ s \in Sat(\Phi) \mid Post(s) \cap T \neq \emptyset \}$$

where

$$Post(s) = \{ s' \in S \mid s \rightarrow s' \}.$$

$$T = \emptyset$$
while $T \neq F(T)$
 $T = F(T)$
return T

Representing $Sat(\exists(\Phi \cup \Psi))$

$$[F](T)(\vec{x}) = [\Psi](\vec{x}) \lor \exists \vec{x}'[\rightarrow](\vec{x}, \vec{x}') \land [\Phi](\vec{x}) \land T(\vec{x}')$$

$$T = 0$$
while $T \neq [F](T)$

$$T = [F](T)$$
return T

Data structures for BDDs

The nodes are represented as integers 0, 1, 2, ... where 0 and 1 represent the leaves labelled 0 and 1.

Given a variable ordering $x_1 < x_2 < \cdots < x_n$, the variables are represented by their indices 0, 1, ..., n.

Node table

The *node table* can be viewed as a partial function

$$T: \mathbb{N} \to (\mathbb{N}^3 \cup \mathbb{N})$$

which maps the index of a node to the indices of its variable, low- and high-successor.

$$u\mapsto (v,\ell,h)$$

Note that 0 and 1 do not have a low- and high-successor. These external vertices are assigned a variable index which is n+1, where n is the number of variables. (This choice simplifies some of the algorithms to be discussed later.)

init(T): initializes T to contain only nodes 0 and 1.

и	var(u)	low(u)	high(u)
0	n + 1		
1	<i>n</i> + 1		

 $u \leftarrow add(T, i, \ell, h)$: allocate a new node u with attributes (i, ℓ, h) .

Question

Given the node table

и	var(u)	low(u)	high(u)
0	n+1		
1	<i>n</i> + 1		

what does the operation add(T, 4, 1, 0) return?

 $u \leftarrow add(T, i, \ell, h)$: allocate a new node u with attributes (i, ℓ, h) .

Question

Given the node table

и	var(u)	low(u)	high(u)
0	n+1		
1	n + 1		

what does the operation add(T, 4, 1, 0) return?

Answer

2.

 $u \leftarrow add(T, i, \ell, h)$: allocate a new node u with attributes (i, ℓ, h) .

Question

Given the operation add(T, 4, 1, 0) applied to the node table

и	var(u)	low(u)	high(u)
0	5		
1	5		

what is the resulting node table?

 $u \leftarrow add(T, i, \ell, h)$: allocate a new node u with attributes (i, ℓ, h) .

Question

Given the operation add(T, 4, 1, 0) applied to the node table

и	var(u)	low(u)	high(u)
0	5		
1	5		

what is the resulting node table?

Answer

и	var(u)	low(u)	high(u)
0	5		
1	5		
2	4	1	0

var(u): look up the var attribute of u in T low(u): look up the low attribute of u in T high(u): look up the high attribute of u in T

Example of node table

Question Give the node table corresponding to the BDD *X*₂ *X*3

Example of node table

Answer

и	var(u)	low(u)	high(u)
0	4		
1	4		
2	3	0	1
3	2	1	2
4	1	0	3

Inverse of node table

The *inverse of the node table* can be viewed as a partial function

$$H:\mathbb{N}^3 \to \mathbb{N}$$

which maps the indices of the attributes of a node to the index of the node.

$$(v,\ell,h)\mapsto u$$

For all $u \ge 2$,

$$T(u) = (i, \ell, h) \text{ iff } H(i, \ell, h) = u.$$

Operations on inverse of node table

```
init(H) : initializes H to be empty
```

 $b \leftarrow member(H, i, \ell, h)$: check if (i, ℓ, h) is in H

 $u \leftarrow lookup(H, i, \ell, h)$: find $H(i, \ell, h)$

 $insert(H, i, \ell, h, u)$: make (i, ℓ, h) map to u in H

Question

Consider the node table *T* and its inverse *H*.

- Let ℓ and h be indices of nodes u_{ℓ} and u_{h} .
- Let *i* be the index of variable x_i .^a

Return the index of the node of T corresponding to $x_i \to u_h, u_\ell$ and expand T and H if needed.

^aIn the variable ordering, this variable occurs before all variables occurring in the subgraphs rooted at ℓ and h.

```
\begin{aligned} \mathsf{MK}[T,H](i,\ell,h) & \text{if } \ell = h \text{ then} \\ & \text{return } \ell \\ & \text{else if } member(H,i,\ell,h) \text{ then} \\ & & \text{return } lookup(H,i,\ell,h) \end{aligned} & \text{else} \\ & u \leftarrow add(T,i,\ell,h) \\ & insert(H,i,\ell,h,u) \\ & \text{return } u \end{aligned}
```

Question

Consider the node table T and its inverse H. Let t be a Boolean expression. Return the node of T corresponding to t.

```
Build[T, H](t)
return build(t, 1)

function build(t, i)
if i > n then
if t is false then return 0 else return 1
else
u_0 \leftarrow build(t[0/x_i], i+1)
u_1 \leftarrow build(t[1/x_i], i+1)
return M_K(i, u_0, u_1)
```

Proposition

For all binary Boolean operators \otimes ,

$$(x \rightarrow t_1, t_0) \otimes (x \rightarrow u_1, u_0) = x \rightarrow t_1 \otimes u_1, t_0 \otimes u_0.$$

Question

Consider the node table *T* and its inverse *H*.

- Let u_1 and u_2 be indices of nodes.
- Let ⊕ be a binary Boolean operator.

Return the index of the node of T corresponding to $u_1 \oplus u_2$ and expand T and H if needed.

```
APPLY[T, H](\oplus, u_1, u_2)
   return app(u_1, u_2)
function app(u_1, u_2)
   if u_1 \in \{0, 1\} and u_2 \in \{0, 1\} then
      U \leftarrow U_1 \oplus U_2
   else if var(u_1) = var(u_2) then
      u \leftarrow MK(var(u_1), app(low(u_1), low(u_2)), app(high(u_1), high(u_2))
   else if var(u_1) < var(u_2) then
      u \leftarrow MK(var(u_1), app(low(u_1), u_2), app(high(u_1), u_2))
   else
      u \leftarrow MK(var(u_2), app(u_1, low(u_2)), app(u_1, high(u_2)))
   return U
```

Example of apply

Example of apply

Question

Consider the node table T and its inverse H.

- Let *u* be the index of a node.
- Let *j* be the index of a variable.
- Let $b \in \{0, 1\}$.

Return the index of the node of T corresponding to $u[b/x_j]$ and expand T and H if needed.

```
RESTRICT[T, H](u, j, b)
  return res(u)
function res(u)
  if var(u) > i then
     return U
  else if var(u) < j then
    return MK(var(u), res(low(u)), res(high(u)))
  else if b = 0 then
     return low(u)
  else
     return high(u)
```

Question

Consider the node table *T* and its inverse *H*.

- Let *u* be the index of a node.
- Let *j* be the index of a variable.

Return the index of the node of T corresponding to $\exists x_j : u$ and expand T and H if needed. You may use operations that we have already defined.

Answer

```
u_0 \leftarrow \text{RESTRICT}[T, H](u, j, 0)

u_1 \leftarrow \text{RESTRICT}[T, H](u, j, 1)

return APPLY[T, H](\lor, u_0, u_1)
```

Implementing *T* and *H*

T: dynamic array

H: hash table